Menu Close

If-x-2-x-2-2-a-3-x-2-x-1-x-2-x-2-a-4-x-2-x-1-2-0-has-at-least-one-root-then-find-complete-set-of-values-of-a-




Question Number 31915 by rahul 19 last updated on 16/Mar/18
If :   (x^2 +x+2)^2 −(a−3)(x^2 +x+1)(x^2 +x+2)  + (a−4)(x^2 +x+1)^2 =0 has at least   one root , then find complete set of   values of a.
If:(x2+x+2)2(a3)(x2+x+1)(x2+x+2)+(a4)(x2+x+1)2=0hasatleastoneroot,thenfindcompletesetofvaluesofa.
Commented by rahul 19 last updated on 16/Mar/18
my try :  let x^2 +x+1= t.  ⇒ (t+1)^2 −(a−3)t(t+1)+(a−4)t^2 =0  since it has atleast one root,  ⇒ Discriminant =0  ⇒(a−3)^2 t^2 −4t^2 (a−4)≥0  ⇒a^2 t^2 +25t^2 −10at^2 ≥0  ⇒t^2 (a−5)^2 ≥0  ⇒a≥5 ( t≠0) hence range = [5,∞).  but correct ans. is (5,((19)/3)].
mytry:letx2+x+1=t.(t+1)2(a3)t(t+1)+(a4)t2=0sinceithasatleastoneroot,Discriminant=0(a3)2t24t2(a4)0a2t2+25t210at20t2(a5)20a5(t0)hencerange=[5,).butcorrectans.is(5,193].
Commented by mrW2 last updated on 16/Mar/18
Discriminant may not contain the  variable itself. it can only contain  the constants.  correct:  ax^2 +bx+c=0  D=b^2 −4ac    not correct:  ax^2 +b(x+d)x+c=0  D=b^2 (x+d)^2 −4ac
Discriminantmaynotcontainthevariableitself.itcanonlycontaintheconstants.correct:ax2+bx+c=0D=b24acnotcorrect:ax2+b(x+d)x+c=0D=b2(x+d)24ac
Commented by rahul 19 last updated on 18/Mar/18
Okay sir.
Okaysir.
Answered by mrW2 last updated on 16/Mar/18
let t=x^2 +x+1  (t+1)^2 −(a−3)t(t+1)+(a−4)t^2 =0  t^2 +2t+1−(a−3)t^2 −(a−3)t+(a−4)t^2 =0  (5−a)t+1=0  (5−a)(x^2 +x+1)+1=0  (5−a)x^2 +(5−a)x+(6−a)=0  a≠5  D=(5−a)^2 −4(5−a)(6−a)≥0  (5−a)(3a−19)≥0  ⇒5<a≤((19)/3)
lett=x2+x+1(t+1)2(a3)t(t+1)+(a4)t2=0t2+2t+1(a3)t2(a3)t+(a4)t2=0(5a)t+1=0(5a)(x2+x+1)+1=0(5a)x2+(5a)x+(6a)=0a5D=(5a)24(5a)(6a)0(5a)(3a19)05<a193
Commented by rahul 19 last updated on 18/Mar/18
thank u so much sir!
thankusomuchsir!

Leave a Reply

Your email address will not be published. Required fields are marked *