Menu Close

If-X-2-Y-2-10-XY-5-Find-X-2-Y-2-




Question Number 86085 by Serlea last updated on 27/Mar/20
If X^2 +Y^2 =10            XY=5  Find (X^2 −Y^2 )
$$\mathrm{If}\:\mathrm{X}^{\mathrm{2}} +\mathrm{Y}^{\mathrm{2}} =\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{XY}=\mathrm{5} \\ $$$$\mathrm{Find}\:\left(\mathrm{X}^{\mathrm{2}} −\mathrm{Y}^{\mathrm{2}} \right) \\ $$
Commented by jagoll last updated on 27/Mar/20
(x+y)^2  = 10+2xy  x+y = ± (√(20)) = ± 2(√5)  (x−y)^2  = (x+y)^2 −4xy  (x−y)^2  = (2(√5))^2 −4.5  ⇒(x−y)^2 = 20−20 = 0  ⇒ x = y  x^2 −y^2  = 0
$$\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} \:=\:\mathrm{10}+\mathrm{2xy} \\ $$$$\mathrm{x}+\mathrm{y}\:=\:\pm\:\sqrt{\mathrm{20}}\:=\:\pm\:\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} \:=\:\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{4xy} \\ $$$$\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} \:=\:\left(\mathrm{2}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{4}.\mathrm{5} \\ $$$$\Rightarrow\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} =\:\mathrm{20}−\mathrm{20}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:\mathrm{y} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$ \\ $$
Commented by Prithwish Sen 1 last updated on 27/Mar/20
but, sir  (x−y)^2  = x^2 +y^2 −2xy = 10 −2.5 = 0
$${but},\:{sir} \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} \:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}\:=\:\mathrm{10}\:−\mathrm{2}.\mathrm{5}\:=\:\mathrm{0} \\ $$
Commented by jagoll last updated on 27/Mar/20
yes. sorry . made mistake
$$\mathrm{yes}.\:\mathrm{sorry}\:.\:\mathrm{made}\:\mathrm{mistake} \\ $$
Commented by Prithwish Sen 1 last updated on 27/Mar/20
It′s ok sir. Have a nice day.
$$\mathrm{It}'\mathrm{s}\:\mathrm{ok}\:\mathrm{sir}.\:\mathrm{Have}\:\mathrm{a}\:\mathrm{nice}\:\mathrm{day}. \\ $$
Answered by mr W last updated on 27/Mar/20
X^2 +Y^2 =10  X^2 Y^2 =25  z^2 −10z+25=0  (z−5)^2 =0  z=5  ⇒X^2 =Y^2 =5  ⇒X^2 −Y^2 =0
$${X}^{\mathrm{2}} +{Y}^{\mathrm{2}} =\mathrm{10} \\ $$$${X}^{\mathrm{2}} {Y}^{\mathrm{2}} =\mathrm{25} \\ $$$${z}^{\mathrm{2}} −\mathrm{10}{z}+\mathrm{25}=\mathrm{0} \\ $$$$\left({z}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${z}=\mathrm{5} \\ $$$$\Rightarrow{X}^{\mathrm{2}} ={Y}^{\mathrm{2}} =\mathrm{5} \\ $$$$\Rightarrow{X}^{\mathrm{2}} −{Y}^{\mathrm{2}} =\mathrm{0} \\ $$
Commented by Prithwish Sen 1 last updated on 27/Mar/20
excellent sir.
$${excellent}\:{sir}. \\ $$
Commented by Serlea last updated on 27/Mar/20
Ok  X^2 +Y^2 =10      xy=5  2(xy)=2(5)          −2(xy)=−2(5)  2xy=10                      −2xy=−10  x^2 +2xy+y^2 =10+10      x^2 −2xy+y^2 =10−10  (x+y)^2 =20                        (x−y)^2 =0  x+y=(√(20   ))                        x−y=0  Therefore   x^2 −Y^2 =(x−y)(x+y)=0
$$\mathrm{Ok} \\ $$$$\mathrm{X}^{\mathrm{2}} +\mathrm{Y}^{\mathrm{2}} =\mathrm{10} \\ $$$$\:\:\:\:\mathrm{xy}=\mathrm{5} \\ $$$$\mathrm{2}\left(\mathrm{xy}\right)=\mathrm{2}\left(\mathrm{5}\right)\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\left(\mathrm{xy}\right)=−\mathrm{2}\left(\mathrm{5}\right) \\ $$$$\mathrm{2xy}=\mathrm{10}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2xy}=−\mathrm{10} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\mathrm{10}+\mathrm{10}\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\mathrm{10}−\mathrm{10} \\ $$$$\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} =\mathrm{20}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{x}−\mathrm{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{x}+\mathrm{y}=\sqrt{\mathrm{20}\:\:\:}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}−\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{Therefore}\: \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{Y}^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *