Menu Close

If-x-2-y-2-2023-2023-then-how-many-pair-of-x-y-where-x-y-N-




Question Number 191232 by BaliramKumar last updated on 21/Apr/23
If x^2  − y^2  = 2023^(2023)  then how many   pair of x,y where x, y ∈ N
$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:\mathrm{2023}^{\mathrm{2023}} \:\mathrm{then}\:\mathrm{how}\:\mathrm{many}\: \\ $$$$\mathrm{pair}\:\mathrm{of}\:{x},{y}\:{where}\:{x},\:{y}\:\in\:\mathrm{N} \\ $$
Answered by mr W last updated on 21/Apr/23
2023=7×17^2   2023^(2023) =7^(2023) ×17^(4046)   (x−y)(x+y)=a×b=7^(2023) ×17^(4046)   x−y=a  x+y=b > a  x=((a+b)/2) >y  y=((b−a)/2)  a pair of (a, b) ⇒ a pair of (x, y)  number of pairs of (a, b) is  (((2023+1)(4046+1))/2)=4 095 564  that means there are 4 095 564 pairs  of x, y.
$$\mathrm{2023}=\mathrm{7}×\mathrm{17}^{\mathrm{2}} \\ $$$$\mathrm{2023}^{\mathrm{2023}} =\mathrm{7}^{\mathrm{2023}} ×\mathrm{17}^{\mathrm{4046}} \\ $$$$\left({x}−{y}\right)\left({x}+{y}\right)={a}×{b}=\mathrm{7}^{\mathrm{2023}} ×\mathrm{17}^{\mathrm{4046}} \\ $$$${x}−{y}={a} \\ $$$${x}+{y}={b}\:>\:{a} \\ $$$${x}=\frac{{a}+{b}}{\mathrm{2}}\:>{y} \\ $$$${y}=\frac{{b}−{a}}{\mathrm{2}} \\ $$$${a}\:{pair}\:{of}\:\left({a},\:{b}\right)\:\Rightarrow\:{a}\:{pair}\:{of}\:\left({x},\:{y}\right) \\ $$$${number}\:{of}\:{pairs}\:{of}\:\left({a},\:{b}\right)\:{is} \\ $$$$\frac{\left(\mathrm{2023}+\mathrm{1}\right)\left(\mathrm{4046}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{4}\:\mathrm{095}\:\mathrm{564} \\ $$$${that}\:{means}\:{there}\:{are}\:\mathrm{4}\:\mathrm{095}\:\mathrm{564}\:{pairs} \\ $$$${of}\:{x},\:{y}. \\ $$
Commented by BaliramKumar last updated on 21/Apr/23
Thanks Sir
$$\mathrm{Thanks}\:\mathrm{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *