Menu Close

If-x-2-y-2-9-4a-2-9b-2-16-then-maximum-value-of-4a-2-x-2-9b-2-y-2-12abxy-is-




Question Number 32629 by rahul 19 last updated on 29/Mar/18
If x^2 +y^2 =9 , 4a^2 +9b^2 =16,  then maximum value of   4a^2 x^2 +9b^2 y^2 −12abxy is ?
Ifx2+y2=9,4a2+9b2=16,thenmaximumvalueof4a2x2+9b2y212abxyis?
Answered by MJS last updated on 31/Mar/18
x^2 +y^2 =9 ⇒ ∣x∣≤3 ∧ ∣y∣≤3  4a^2 +9b^2 =16 ⇒ ∣a∣≤2 ∧ ∣b∣≤(4/3)  4a^2 x^2 +9b^2 y^2 −12abxy=(2ax−3by)^2   y=±(√(9−x^2 ))  b=±(2/3)(√(4−a^2 ))  (2ax±2(√(4−a^2 ))(√(9−x^2 )))^2 =  =4(ax±(√(4−a^2 ))(√(9−x^2 )))^2   f(x)=ax+(√(4−a^2 ))(√(9−x^2 ))  f′(x)=a−((x(√(4−a^2 )))/( (√(9−x^2 ))))  f′(x)=0 ⇒ x=±(3/2)a  4(ax±(√(4−a^2 ))(√(9−x^2 )))^2 =  =4(±(3/2)a^2 ±(3/2)(4−a^2 ))^2 =  =4(±6)^2  ∨ 4(±(6−3a^2 ))^2 =  =144 ∨ 36(2−a^2 )^2   g(a)=36(2−a^2 )^2   g′(a)=144a(2−a^2 )  g′(a)=0 ⇒ a=0 ∨ a=±(√2)  g(±(√2))=0  g(0)=144  Answer=144  a=0  b=±(4/3)  x=0  y=±3
x2+y2=9x∣⩽3y∣⩽34a2+9b2=16a∣⩽2b∣⩽434a2x2+9b2y212abxy=(2ax3by)2y=±9x2b=±234a2(2ax±24a29x2)2==4(ax±4a29x2)2f(x)=ax+4a29x2f(x)=ax4a29x2f(x)=0x=±32a4(ax±4a29x2)2==4(±32a2±32(4a2))2==4(±6)24(±(63a2))2==14436(2a2)2g(a)=36(2a2)2g(a)=144a(2a2)g(a)=0a=0a=±2g(±2)=0g(0)=144Answer=144a=0b=±43x=0y=±3
Commented by rahul 19 last updated on 31/Mar/18
thank u sir !
thankusir!

Leave a Reply

Your email address will not be published. Required fields are marked *