Menu Close

If-x-2-y-2-9-then-max-value-of-x-3-y-3-x-y-




Question Number 164912 by bobhans last updated on 23/Jan/22
  If x^2 +y^2  = 9 , then max value of ((x^3 +y^3 )/(x+y))
Ifx2+y2=9,thenmaxvalueofx3+y3x+y
Commented by bobhans last updated on 23/Jan/22
all answer is great
allanswerisgreat
Answered by mahdipoor last updated on 23/Jan/22
A=(((x+y)(x^2 +y^2 −xy))/(x+y))=9−xy   (x≠−y)  =9±x(√(9−x^2 ))  (dA/dx)=0=±(((−2x^2 )/(2(√(9−x^2 ))))+(√(9−x^2 )))⇒x=±(√(9/2))  ⇒A(±(√(9/2)))=9±(9/2)⇒A_(max) =9+(9/2)=13.5
A=(x+y)(x2+y2xy)x+y=9xy(xy)=9±x9x2dAdx=0=±(2x229x2+9x2)x=±92A(±92)=9±92Amax=9+92=13.5
Answered by mr W last updated on 23/Jan/22
(√(ab))≤((a+b)/2)  ((x^3 +y^3 )/(x+y))=x^2 +y^2 −xy=x^2 +y^2 +(√((−x)^2 y^2 ))  ≤x^2 +y^2 +(((−x)^2 +y^2 )/2)=9+(9/2)=((27)/2)  i.e. (((x^3 +y^3 )/(x+y)))_(max) =((27)/2)
aba+b2x3+y3x+y=x2+y2xy=x2+y2+(x)2y2x2+y2+(x)2+y22=9+92=272i.e.(x3+y3x+y)max=272
Answered by FelipeLz last updated on 23/Jan/22
x^2 +y^2  = 9 →  { ((x = 3cos(t))),((y = 3sin(t))) :}  v = ((x^3 +y^3 )/(x+y)) = (((x+y)(x^2 −xy+y^2 ))/(x+y)) = x^2 −xy+y^2  = (9/2)[2−sin(2t)]  sin(2t) ∈ [−1, 1]  ∀t  2t = sin^(−1) (−1)  2t = ((3π)/2)  t = ((3π)/4) → v = ((27)/2)
x2+y2=9{x=3cos(t)y=3sin(t)v=x3+y3x+y=(x+y)(x2xy+y2)x+y=x2xy+y2=92[2sin(2t)]sin(2t)[1,1]t2t=sin1(1)2t=3π2t=3π4v=272

Leave a Reply

Your email address will not be published. Required fields are marked *