Menu Close

If-x-2-y-2-xy-1-Find-range-of-E-x-3-y-xy-3-4-




Question Number 46478 by rahul 19 last updated on 27/Oct/18
If x^2 +y^2 +xy=1. Find range of   E = x^3 y+xy^3 +4 .
$${If}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}=\mathrm{1}.\:{Find}\:{range}\:{of}\: \\ $$$${E}\:=\:{x}^{\mathrm{3}} {y}+{xy}^{\mathrm{3}} +\mathrm{4}\:. \\ $$
Commented by rahul 19 last updated on 27/Oct/18
Sir, ans. is   2≤E≤((38)/9) .  Is it wrong as i cannot find any mistake  in your solution....??
$${Sir},\:{ans}.\:{is}\: \\ $$$$\mathrm{2}\leqslant{E}\leqslant\frac{\mathrm{38}}{\mathrm{9}}\:. \\ $$$${Is}\:{it}\:{wrong}\:{as}\:{i}\:{cannot}\:{find}\:{any}\:{mistake} \\ $$$${in}\:{your}\:{solution}….?? \\ $$
Answered by MJS last updated on 27/Oct/18
x^2 +yx+y^2 −1=0  this is an ellipse with center  ((0),(0) ) and θ=−45°  y=−(x/2)±((√(4−3x^2 ))/2) ⇒ −((2(√3))/3)≤x≤((2(√3))/3)  ⇒ −((2(√3))/3)≤y≤((2(√3))/3) [because of symmetry]    E(x)=x^3 (−(x/2)±((√(4−3x^2 ))/2))+x(−(x/2)±((√(4−3x^2 ))/2))^3 +4=  =(x^4 /2)−((3x^2 )/2)+4±((x(x^2 +1)(√(4−3x^2 )))/2)  solving E′(x)=0 we get minima and maxima  at x=±1 and x=±((√3)/3) ⇒ range(E)=[2; ((38)/9)]
$${x}^{\mathrm{2}} +{yx}+{y}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{with}\:\mathrm{center}\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\mathrm{and}\:\theta=−\mathrm{45}° \\ $$$${y}=−\frac{{x}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}}\:\Rightarrow\:−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\leqslant{x}\leqslant\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\Rightarrow\:−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\leqslant{y}\leqslant\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\left[\mathrm{because}\:\mathrm{of}\:\mathrm{symmetry}\right] \\ $$$$ \\ $$$${E}\left({x}\right)={x}^{\mathrm{3}} \left(−\frac{{x}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}}\right)+{x}\left(−\frac{{x}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}}\right)^{\mathrm{3}} +\mathrm{4}= \\ $$$$=\frac{{x}^{\mathrm{4}} }{\mathrm{2}}−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{4}\pm\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{4}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\mathrm{solving}\:{E}'\left({x}\right)=\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\mathrm{minima}\:\mathrm{and}\:\mathrm{maxima} \\ $$$$\mathrm{at}\:{x}=\pm\mathrm{1}\:\mathrm{and}\:{x}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:\Rightarrow\:\mathrm{range}\left({E}\right)=\left[\mathrm{2};\:\frac{\mathrm{38}}{\mathrm{9}}\right] \\ $$
Commented by rahul 19 last updated on 27/Oct/18
thanks sir! ����

Leave a Reply

Your email address will not be published. Required fields are marked *