Menu Close

if-x-2-y-2-xy-5-find-the-range-of-x-2-y-2-xy-x-y-R-




Question Number 179100 by mr W last updated on 24/Oct/22
if x^2 +y^2 +xy=5, find the range of  x^2 +y^2 −xy.  (x,y ∈R)
ifx2+y2+xy=5,findtherangeofx2+y2xy.(x,yR)
Commented by Frix last updated on 24/Oct/22
[(5/3); 15]
[53;15]
Commented by Acem last updated on 25/Oct/22
Good!
Good!
Answered by Acem last updated on 25/Oct/22
 R= [−5, +∞[
R=[5,+[
Commented by MJS_new last updated on 25/Oct/22
how?
how?
Answered by MJS_new last updated on 25/Oct/22
let y=px  (p^2 +p+1)x^2 =5  x^2 =(5/(p^2 +p+1))  x^2 +y^2 −xy=((5(p^2 −p+1))/(p^2 +p+1))  ((d[((5(p^2 −p+1))/(p^2 +p+1))])/dp)=0  ((10(p^2 −1))/((p^2 +p+1)^2 ))=0 ⇒ p=±1  ⇒  (5/3)≤((5(p^2 −p+1))/(p^2 +p+1))≤15  ⇔  (5/3)≤x^2 +y^2 −xy≤15
lety=px(p2+p+1)x2=5x2=5p2+p+1x2+y2xy=5(p2p+1)p2+p+1d[5(p2p+1)p2+p+1]dp=010(p21)(p2+p+1)2=0p=±1535(p2p+1)p2+p+11553x2+y2xy15
Commented by Acem last updated on 25/Oct/22
 You′re right
Youreright
Commented by mr W last updated on 25/Oct/22
yes, thanks!
yes,thanks!
Answered by mr W last updated on 25/Oct/22
x^2 +y^2 +xy=5     ...(i)  x^2 +y^2 −xy=k     ...(ii)  (i)+(ii):  x^2 +y^2 =((5+k)/2)  (i)−(ii):  xy=((5−k)/2)  ((5−k)/2)=xy≤((x^2 +y^2 )/2)=((5+k)/4)  ⇒10−2k≤5+k ⇒k≥(5/3)  ((5−k)/2)=xy≥−((x^2 +y^2 )/2)=−((5+k)/4)  ⇒10−2k≥−5−k ⇒k≤15    ⇒(5/3)≤x^2 +y^2 −xy≤15
x2+y2+xy=5(i)x2+y2xy=k(ii)(i)+(ii):x2+y2=5+k2(i)(ii):xy=5k25k2=xyx2+y22=5+k4102k5+kk535k2=xyx2+y22=5+k4102k5kk1553x2+y2xy15
Commented by mr W last updated on 25/Oct/22
(x−y)^2 ≥0 ⇒x^2 +y^2 ≥2xy ⇒xy≤((x^2 +y^2 )/2)  (x+y)^2 ≥0 ⇒2xy≥−(x^2 +y^2 ) ⇒xy≥−((x^2 +y^2 )/2)
(xy)20x2+y22xyxyx2+y22(x+y)202xy(x2+y2)xyx2+y22
Commented by Acem last updated on 25/Oct/22
Nice solution, but  ((5−k)/2)=xy≤ ((5+k)/2) but how xy≤ ((5+k)/4)
Nicesolution,but5k2=xy5+k2buthowxy5+k4
Commented by mr W last updated on 25/Oct/22
xy≤((x^2 +y^2 )/2) and x^2 +y^2 =((5+k)/2), so it is  clear to me that  xy≤((5+k)/4).
xyx2+y22andx2+y2=5+k2,soitiscleartomethatxy5+k4.
Commented by Acem last updated on 26/Oct/22
Good
Good
Answered by manxsol last updated on 26/Oct/22
    find     r^2 (1−((sin2θ)/2))  r^2 ( 1+((sin2θ)/2))=5  sin2θ=((10)/r^2 )−2  −1≪((10)/r^2 )−2≤1  ((10)/3)≤r^2 ≤10  (1/2)≤1−((sin2θ)/2)≤(3/2)
findr2(1sin2θ2)r2(1+sin2θ2)=5sin2θ=10r22110r221103r210121sin2θ232

Leave a Reply

Your email address will not be published. Required fields are marked *