Menu Close

If-x-2t-sin-2t-y-e-sin-2t-prove-that-1-y-dy-dx-tan-pi-4-t-




Question Number 102342 by bemath last updated on 08/Jul/20
If  { ((x=2t+sin 2t)),((y=e^(sin 2t) )) :}  prove that (1/y).(dy/dx) = tan ((π/4)−t)
If{x=2t+sin2ty=esin2tprovethat1y.dydx=tan(π4t)
Commented by Dwaipayan Shikari last updated on 08/Jul/20
There is some error in question  if   x=2t−cos2t  then the prove is true
Thereissomeerrorinquestionifx=2tcos2tthentheproveistrue
Commented by bobhans last updated on 08/Jul/20
yes sir. i think something error in question
yessir.ithinksomethingerrorinquestion
Answered by bobhans last updated on 08/Jul/20
⇒sin 2t = ln(y) ; 2 cos 2t = (1/y).(dy/dt)  (dx/dt) = 2+2cos 2t ⇒(dx/dt) = 2+(1/y).(dy/dt) ...(1)  (dy/dx) = (dy/dt)×(dt/dx) = (dy/dt)×(1/(dx/dt))   (dy/dx)= 2y cos 2t × (1/(2+2cos 2t))  (1/y) (dy/dx) = ((2cos 2t)/(2(1+cos 2t))) = ((1−2sin^2 t)/(2cos^2 t))   =(1/2)sec^2 t−tan^2 t   = (1/2)(tan^2 t−1)−tan^2 t
sin2t=ln(y);2cos2t=1y.dydtdxdt=2+2cos2tdxdt=2+1y.dydt(1)dydx=dydt×dtdx=dydt×1dxdtdydx=2ycos2t×12+2cos2t1ydydx=2cos2t2(1+cos2t)=12sin2t2cos2t=12sec2ttan2t=12(tan2t1)tan2t
Answered by Dwaipayan Shikari last updated on 08/Jul/20
if  x=2t−cos2t  (dx/dt)=2+2sin2t  logy=sin2t  (1/y).(dy/dt)=2cos2t  (1/y).(dy/dx)=((2cos2t)/(2+2sin2t))=(((1−tan^2 t)/(1+tan^2 t))/(1+((2tant)/(1+tan^2 t))))=((1−tan^2 t)/((1+tant)^2 ))=((1−tant)/(1+tant))=tan((π/4)−t)
ifx=2tcos2tdxdt=2+2sin2tlogy=sin2t1y.dydt=2cos2t1y.dydx=2cos2t2+2sin2t=1tan2t1+tan2t1+2tant1+tan2t=1tan2t(1+tant)2=1tant1+tant=tan(π4t)

Leave a Reply

Your email address will not be published. Required fields are marked *