Question Number 163897 by HongKing last updated on 11/Jan/22
$$\mathrm{if}\:\:\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{x}\:\neq\:\mathrm{1} \\ $$$$\mathrm{simplificar}\:\:\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{5}} }\right)^{\mathrm{3}} \\ $$
Answered by mr W last updated on 11/Jan/22
$${x}^{\mathrm{3}} =\mathrm{1} \\ $$$${x}^{\mathrm{4}} ={x} \\ $$$${x}^{\mathrm{5}} ={x}^{\mathrm{2}} =\frac{{x}^{\mathrm{3}} }{{x}}=\frac{\mathrm{1}}{{x}} \\ $$$$\:\:\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{5}} }\right)^{\mathrm{3}} =\left(\frac{\mathrm{1}}{{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}{x}+\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{3}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}×\frac{{x}^{\mathrm{3}} −\mathrm{1}}{{x}−\mathrm{1}}−\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}×\mathrm{0}−\mathrm{1}}=−\mathrm{1} \\ $$
Commented by HongKing last updated on 11/Jan/22
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{cool} \\ $$
Answered by Rasheed.Sindhi last updated on 14/Jan/22
$$\mathrm{An}\:\mathrm{other}\:\mathrm{way} \\ $$$$\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{x}\:\neq\:\mathrm{1};\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{5}} }\right)^{\mathrm{3}} =?\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{1}=\mathrm{0}\Rightarrow\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}=\mathrm{0}\:\:\:\left[\because\:\mathrm{x}\neq\mathrm{1}\right] \\ $$$$\begin{array}{|c|}{\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{1}\:\:\:\:\wedge\:\:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}=\mathrm{0}}\\\hline\end{array} \\ $$$$\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{1}:\:\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{5}} }\right)^{\mathrm{3}} =\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} \centerdot\mathrm{x}}}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} \centerdot\mathrm{x}^{\mathrm{2}} }\right)^{\mathrm{3}} =\left(\frac{\frac{\mathrm{1}}{\mathrm{x}}}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} }\right)^{\mathrm{3}} \\ $$$$=\left(\frac{\frac{\mathrm{1}}{\mathrm{x}}}{\cancel{\mathrm{1}}−\mathrm{x}−\cancel{\mathrm{1}}}\right)^{\mathrm{3}} \:\:\:\:\:\:\:\:\:\left[\because\:\mathrm{x}^{\mathrm{2}} =−\mathrm{x}−\mathrm{1}\right] \\ $$$$=\left(−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)^{\mathrm{3}} =−\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{2}} }=−\mathrm{1} \\ $$