Menu Close

If-x-3-1-y-3-y-3-1-z-3-1-Find-xyz-2025-1-




Question Number 154316 by mathdanisur last updated on 17/Sep/21
If  x^3  + (1/y^3 ) = y^3  + (1/z^3 ) = 1  Find  (xyz)^(2025)  - 1 = ?
Ifx3+1y3=y3+1z3=1Find(xyz)20251=?
Answered by Rasheed.Sindhi last updated on 17/Sep/21
  x^3  + (1/y^3 ) = y^3  + (1/z^3 ) = 1; (xyz)^(2025)  - 1 = ?   { ((x^3 =1−(1/y^3 )=((y^3 −1)/y^3 ))),((z^3 =(1/(1−y^3 ))=−(1/(y^3 −1)))) :}   ▶(xyz)^(2025)  - 1=(x^3 y^3 z^3 )^(675) −1  =((((y^3 −1)/y^3 ))(y^3 )(−(1/(y^3 −1))))^(675) −1  =(−1)^(675) −1=−1−1=−2
x3+1y3=y3+1z3=1;(xyz)20251=?{x3=11y3=y31y3z3=11y3=1y31(xyz)20251=(x3y3z3)6751=((y31y3)(y3)(1y31))6751=(1)6751=11=2
Commented by mathdanisur last updated on 17/Sep/21
Nice Ser, thank you
NiceSer,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *