Menu Close

If-x-3-x-3-0-has-the-roots-a-b-and-c-determine-the-monic-polynomial-with-the-roots-a-5-b-5-and-c-5-Q152396-




Question Number 152663 by mr W last updated on 31/Aug/21
If  x^3 -x+3=0 has the roots a, b and c.  determine the monic polynomial with  the roots  a^5 , b^5  and  c^5 .  [Q152396]
Ifx3x+3=0hastherootsa,bandc.determinethemonicpolynomialwiththerootsa5,b5andc5.[Q152396]
Answered by mr W last updated on 30/Aug/21
a+b+c=0  ab+bc+ca=−1  abc=−3    let p_k =a^k +b^k +c^k   p_1 =e_1 =0  p_2 =e_1 p_1 −2e_2 =−2×(−1)=2  p_3 =e_1 p_2 −e_2 p_1 +3e_3 =3(−3)=−9  p_4 =e_1 p_3 −e_2 p_2 +e_3 p_1 =−(−1)2=2  p_5 =e_1 p_4 −e_2 p_3 +e_3 p_2 =−(−1)(−9)+(−3)2=−15  i.e. a^5 +b^5 +c^5 =−15    let p_k =(ab)^k +(bc)^k +(ca)^k   p_1 =e_1 =ab+bc+ca=−1  e_2 =ab^2 c+bc^2 a+ca^2 b=abc(a+b+c)=0  e_3 =ab×bc×ca=(abc)^2 =9  p_2 =e_1 p_1 −2e_2 =(−1)(−1)−2×0=1  p_3 =e_1 p_2 −e_2 p_1 +3e_3 =(−1)1+3×9=26  p_4 =e_1 p_3 −e_2 p_2 +e_3 p_1 =(−1)26+9(−1)=−35  p_5 =e_1 p_4 −e_2 p_3 +e_3 p_2 =(−1)(−35)+9×1=44  i.e. a^5 b^5 +b^5 c^5 +c^5 a^5 =44    a^5 b^5 c^5 =(abc)^5 =(−3)^5 =−243    the equation with roots a^5 ,b^5 ,c^5  is  x^3 +15x^2 +44x+243=0
a+b+c=0ab+bc+ca=1abc=3letpk=ak+bk+ckp1=e1=0p2=e1p12e2=2×(1)=2p3=e1p2e2p1+3e3=3(3)=9p4=e1p3e2p2+e3p1=(1)2=2p5=e1p4e2p3+e3p2=(1)(9)+(3)2=15i.e.a5+b5+c5=15letpk=(ab)k+(bc)k+(ca)kp1=e1=ab+bc+ca=1e2=ab2c+bc2a+ca2b=abc(a+b+c)=0e3=ab×bc×ca=(abc)2=9p2=e1p12e2=(1)(1)2×0=1p3=e1p2e2p1+3e3=(1)1+3×9=26p4=e1p3e2p2+e3p1=(1)26+9(1)=35p5=e1p4e2p3+e3p2=(1)(35)+9×1=44i.e.a5b5+b5c5+c5a5=44a5b5c5=(abc)5=(3)5=243theequationwithrootsa5,b5,c5isx3+15x2+44x+243=0
Commented by Tawa11 last updated on 30/Aug/21
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *