Menu Close

if-x-3-y-3-3axy-find-dy-dx-in-terms-of-x-and-y-and-prove-that-dy-dx-cannot-be-equal-to-1-for-finite-values-of-x-and-y-except-x-y-please-help-




Question Number 13226 by chux last updated on 16/May/17
if x^3 +y^3 =3axy,find dy/dx in terms  of x and y and prove that dy/dx   cannot be equal to -1 for finite  values of x and y except x=y.      please help
ifx3+y3=3axy,finddy/dxintermsofxandyandprovethatdy/dxcannotbeequalto1forfinitevaluesofxandyexceptx=y.pleasehelp
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/May/17
3x^2 +3y^2 (dy/dx)=3ay+3ax(dy/dx)      ((dy/dx)=y^′ )  ⇒(3y^2 −3ax)y^′ =3(ay−x^2 )⇒  y^′ =((ay−x^2 )/(y^2 −ax))     .■  if :(y^′ =−1)⇒ay−x^2 =ax−y^2 ⇒  (y−x)(y+x)+a(y−x)=0⇒(y−x)(y+x+a)=0⇒  ⇒ { ((y−x=0⇒y=x)),((y+x+a=0⇒y=−(x+a)   .■)) :}
3x2+3y2dydx=3ay+3axdydx(dydx=y)(3y23ax)y=3(ayx2)y=ayx2y2ax.◼if:(y=1)ayx2=axy2(yx)(y+x)+a(yx)=0(yx)(y+x+a)=0{yx=0y=xy+x+a=0y=(x+a).◼
Answered by ajfour last updated on 16/May/17
x^3 +y^3 =3axy              ......(i)  3x^2 +3y^2 (dy/dx)=3ay+3ax(dy/dx)  (dy/dx)=((ay−x^2 )/(y^2 −ax))  (dy/dx)+1=((ay−x^2 +y^2 −ax)/(y^2 −ax))             =(((y−x)(x+y+a))/(y^2 −ax))  ⇒ (dy/dx)+1=0   only when   x=y ,  or  (x+y+a)=0  (x+y)^3 =x^3 +y^3 +3xy(x+y)   ...(ii)    x^3 +y^3  = 3axy                  ...(i)  (i)+(ii) :  (x+y)^3 =3xy(x+y+a)  ⇒ if (x+y+a)=0,   x+y=0  so for (x+y+a)=0  condition is  x+y=0 and even  a=0   therefore if a≠0,  x+y+a≠0  ⇒ (dy/dx)+1=0  or   (dy/dx)=−1 only  for  x=y .    (granted they are finite)
x3+y3=3axy(i)3x2+3y2dydx=3ay+3axdydxdydx=ayx2y2axdydx+1=ayx2+y2axy2ax=(yx)(x+y+a)y2axdydx+1=0onlywhenx=y,or(x+y+a)=0(x+y)3=x3+y3+3xy(x+y)(ii)x3+y3=3axy(i)(i)+(ii):(x+y)3=3xy(x+y+a)if(x+y+a)=0,x+y=0sofor(x+y+a)=0conditionisx+y=0andevena=0thereforeifa0,x+y+a0dydx+1=0ordydx=1onlyforx=y.(grantedtheyarefinite)
Commented by chux last updated on 17/May/17
thanks alot.
thanksalot.

Leave a Reply

Your email address will not be published. Required fields are marked *