if-x-3-y-3-3axy-find-dy-dx-in-terms-of-x-and-y-and-prove-that-dy-dx-cannot-be-equal-to-1-for-finite-values-of-x-and-y-except-x-y-please-help- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 13226 by chux last updated on 16/May/17 ifx3+y3=3axy,finddy/dxintermsofxandyandprovethatdy/dxcannotbeequalto−1forfinitevaluesofxandyexceptx=y.pleasehelp Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/May/17 3x2+3y2dydx=3ay+3axdydx(dydx=y′)⇒(3y2−3ax)y′=3(ay−x2)⇒y′=ay−x2y2−ax.if:(y′=−1)⇒ay−x2=ax−y2⇒(y−x)(y+x)+a(y−x)=0⇒(y−x)(y+x+a)=0⇒⇒{y−x=0⇒y=xy+x+a=0⇒y=−(x+a). Answered by ajfour last updated on 16/May/17 x3+y3=3axy……(i)3x2+3y2dydx=3ay+3axdydxdydx=ay−x2y2−axdydx+1=ay−x2+y2−axy2−ax=(y−x)(x+y+a)y2−ax⇒dydx+1=0onlywhenx=y,or(x+y+a)=0(x+y)3=x3+y3+3xy(x+y)…(ii)x3+y3=3axy…(i)(i)+(ii):(x+y)3=3xy(x+y+a)⇒if(x+y+a)=0,x+y=0sofor(x+y+a)=0conditionisx+y=0andevena=0thereforeifa≠0,x+y+a≠0⇒dydx+1=0ordydx=−1onlyforx=y.(grantedtheyarefinite) Commented by chux last updated on 17/May/17 thanksalot. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-13224Next Next post: Question-13228 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.