Menu Close

If-x-4-ax-2-bx-c-0-t-4-At-2-B-0-Find-A-and-B-




Question Number 65062 by ajfour last updated on 24/Jul/19
If  x^4 +ax^2 +bx+c=0  ⇒ t^4 +At^2 +B=0  Find A and B.
Ifx4+ax2+bx+c=0t4+At2+B=0FindAandB.
Commented by MJS last updated on 24/Jul/19
I once posted that matrix method by  Tschirnhaus... cannot find it right now,  must be somewhere on this forum  it should help in this case
IoncepostedthatmatrixmethodbyTschirnhauscannotfinditrightnow,mustbesomewhereonthisforumitshouldhelpinthiscase
Commented by MJS last updated on 24/Jul/19
found it: question 54775
foundit:question54775
Commented by MJS last updated on 24/Jul/19
you′ll have to adapt it to remove the linear  term but it looks possible
youllhavetoadaptittoremovethelineartermbutitlookspossible
Commented by MJS last updated on 25/Jul/19
...you also need to learn how to use the  method with a polynome of 4^(th)  degree...  maybe you can find something on the web
youalsoneedtolearnhowtousethemethodwithapolynomeof4thdegreemaybeyoucanfindsomethingontheweb
Commented by ajfour last updated on 25/Jul/19
MjS Sir, thanks for your  sincere suggestions and yes  my method is hopelessly  complicated..
MjSSir,thanksforyoursinceresuggestionsandyesmymethodishopelesslycomplicated..
Answered by ajfour last updated on 26/Jul/19
let  x=((pt+q)/(t+1))  ⇒ p^4 t^4 +4p^3 qt^3 +6p^2 q^2 t^2 +4pq^3 t+q^4      +a(p^2 t^2 +2pqt+q^2 )(t^2 +2t+1)     +b(pt+q)(t^3 +3t^2 +3t+1)     +c(t^4 +4t^3 +6t^2 +4t+1)=0  ⇒   (p^4 +ap^2 +bp+c)t^4 +  (4p^3 q+2ap^2 +2apq+3bp+bq+4c)t^3   +(6p^2 q^2 +ap^2 +4apq+aq^2 +        3bp+3bq+6c)t^2 +  (4pq^3 +2apq+2aq^2 +bp+3bq+4c)t  +(q^4 +aq^2 +bq+c)=0    since coefficients of t^3  , t have  to be zero, ⇒  4p^3 q+2ap^2 +2apq+3bp+bq+4c=0           ....(I)  4pq^3 +2apq+2aq^2 +bp+3bq+4c=0          ....(II)  subtracting ⇒  2pq(p^2 −q^2 )+a(p^2 −q^2 )+b(p−q)=0  And as  p≠q , ⇒  2pq(p+q)+a(p+q)+b=0    ...(i)  Adding (I),(II)  2pq(p^2 +q^2 )+a(p^2 +q^2 )+2apq+    2b(p+q)+4c=0      .....(ii)    let  p+q=s , pq=m  transforming (i)&(ii)  ________________________  s(2m+a)+b=0       ....(A)  (2m+a)(s^2 −2m)+          2am+2bs+4c=0    ....(B)  ________________________  (A) ⇒    m=−(((as+b)/(2s)))  Substituting in (B)    −(b/s)(s^2 +((as+b)/s))−((a(as+b))/s)                    +2bs+4c=0  ⇒  ((b(as+b))/s^2 )+((a(as+b))/s)=bs+4c  ________________________  ⇒  bs^3 +(4c−a^2 )s^2 −2abs−b^2 =0     s is obtained from this eq.         m=−(((as+b)/(2s)))   p, q are then roots of quadratic       z^2 −sz+m=0  ________________________  Now   (p^4 +ap^2 +bp+c)t^4 +  +(6p^2 q^2 +ap^2 +4apq+aq^2 +        3bp+3bq+6c)t^2 +  +(q^4 +aq^2 +bq+c)=0  ⇒   t^4 +(((6p^2 q^2 +ap^2 +4apq+aq^2 +3bp+3bq+6c)/(p^4 +ap^2 +bp+c)))t^2      +((q^4 +aq^2 +bq+c)/(p^4 +ap^2 +bp+c)) = 0  t^4 +[((6p^2 q^2 +a(p+q)^2 +2apq+3b(p+q))/(p^4 +ap^2 +bp+c))]t^2      +((q^4 +aq^2 +bq+c)/(p^4 +ap^2 +bp++c)) = 0  ⇒ t^4 +[((6m^2 +as^2 +2am+3bs)/(f(p)))]t^2            +((f(q))/(f(p)))=0     x=((pt+q)/(t+1))  .
letx=pt+qt+1p4t4+4p3qt3+6p2q2t2+4pq3t+q4+a(p2t2+2pqt+q2)(t2+2t+1)+b(pt+q)(t3+3t2+3t+1)+c(t4+4t3+6t2+4t+1)=0(p4+ap2+bp+c)t4+(4p3q+2ap2+2apq+3bp+bq+4c)t3+(6p2q2+ap2+4apq+aq2+3bp+3bq+6c)t2+(4pq3+2apq+2aq2+bp+3bq+4c)t+(q4+aq2+bq+c)=0sincecoefficientsoft3,thavetobezero,4p3q+2ap2+2apq+3bp+bq+4c=0.(I)4pq3+2apq+2aq2+bp+3bq+4c=0.(II)subtracting2pq(p2q2)+a(p2q2)+b(pq)=0Andaspq,2pq(p+q)+a(p+q)+b=0(i)Adding(I),(II)2pq(p2+q2)+a(p2+q2)+2apq+2b(p+q)+4c=0..(ii)letp+q=s,pq=mtransforming(i)&(ii)________________________s(2m+a)+b=0.(A)(2m+a)(s22m)+2am+2bs+4c=0.(B)________________________(A)m=(as+b2s)Substitutingin(B)bs(s2+as+bs)a(as+b)s+2bs+4c=0b(as+b)s2+a(as+b)s=bs+4c________________________bs3+(4ca2)s22absb2=0sisobtainedfromthiseq.m=(as+b2s)p,qarethenrootsofquadraticz2sz+m=0________________________Now(p4+ap2+bp+c)t4++(6p2q2+ap2+4apq+aq2+3bp+3bq+6c)t2++(q4+aq2+bq+c)=0t4+(6p2q2+ap2+4apq+aq2+3bp+3bq+6cp4+ap2+bp+c)t2+q4+aq2+bq+cp4+ap2+bp+c=0t4+[6p2q2+a(p+q)2+2apq+3b(p+q)p4+ap2+bp+c]t2+q4+aq2+bq+cp4+ap2+bp++c=0t4+[6m2+as2+2am+3bsf(p)]t2+f(q)f(p)=0x=pt+qt+1.

Leave a Reply

Your email address will not be published. Required fields are marked *