Question Number 65062 by ajfour last updated on 24/Jul/19

Commented by MJS last updated on 24/Jul/19

Commented by MJS last updated on 24/Jul/19

Commented by MJS last updated on 24/Jul/19

Commented by MJS last updated on 25/Jul/19

Commented by ajfour last updated on 25/Jul/19

Answered by ajfour last updated on 26/Jul/19
![let x=((pt+q)/(t+1)) ⇒ p^4 t^4 +4p^3 qt^3 +6p^2 q^2 t^2 +4pq^3 t+q^4 +a(p^2 t^2 +2pqt+q^2 )(t^2 +2t+1) +b(pt+q)(t^3 +3t^2 +3t+1) +c(t^4 +4t^3 +6t^2 +4t+1)=0 ⇒ (p^4 +ap^2 +bp+c)t^4 + (4p^3 q+2ap^2 +2apq+3bp+bq+4c)t^3 +(6p^2 q^2 +ap^2 +4apq+aq^2 + 3bp+3bq+6c)t^2 + (4pq^3 +2apq+2aq^2 +bp+3bq+4c)t +(q^4 +aq^2 +bq+c)=0 since coefficients of t^3 , t have to be zero, ⇒ 4p^3 q+2ap^2 +2apq+3bp+bq+4c=0 ....(I) 4pq^3 +2apq+2aq^2 +bp+3bq+4c=0 ....(II) subtracting ⇒ 2pq(p^2 −q^2 )+a(p^2 −q^2 )+b(p−q)=0 And as p≠q , ⇒ 2pq(p+q)+a(p+q)+b=0 ...(i) Adding (I),(II) 2pq(p^2 +q^2 )+a(p^2 +q^2 )+2apq+ 2b(p+q)+4c=0 .....(ii) let p+q=s , pq=m transforming (i)&(ii) ________________________ s(2m+a)+b=0 ....(A) (2m+a)(s^2 −2m)+ 2am+2bs+4c=0 ....(B) ________________________ (A) ⇒ m=−(((as+b)/(2s))) Substituting in (B) −(b/s)(s^2 +((as+b)/s))−((a(as+b))/s) +2bs+4c=0 ⇒ ((b(as+b))/s^2 )+((a(as+b))/s)=bs+4c ________________________ ⇒ bs^3 +(4c−a^2 )s^2 −2abs−b^2 =0 s is obtained from this eq. m=−(((as+b)/(2s))) p, q are then roots of quadratic z^2 −sz+m=0 ________________________ Now (p^4 +ap^2 +bp+c)t^4 + +(6p^2 q^2 +ap^2 +4apq+aq^2 + 3bp+3bq+6c)t^2 + +(q^4 +aq^2 +bq+c)=0 ⇒ t^4 +(((6p^2 q^2 +ap^2 +4apq+aq^2 +3bp+3bq+6c)/(p^4 +ap^2 +bp+c)))t^2 +((q^4 +aq^2 +bq+c)/(p^4 +ap^2 +bp+c)) = 0 t^4 +[((6p^2 q^2 +a(p+q)^2 +2apq+3b(p+q))/(p^4 +ap^2 +bp+c))]t^2 +((q^4 +aq^2 +bq+c)/(p^4 +ap^2 +bp++c)) = 0 ⇒ t^4 +[((6m^2 +as^2 +2am+3bs)/(f(p)))]t^2 +((f(q))/(f(p)))=0 x=((pt+q)/(t+1)) .](https://www.tinkutara.com/question/Q65065.png)