Menu Close

If-x-4-px-3-qx-2-rx-5-0-has-four-real-roots-then-find-the-minimum-value-of-pr-




Question Number 44898 by ajfour last updated on 06/Oct/18
If    x^4 +px^3 +qx^2 +rx+5 = 0  has four real roots, then find   the minimum value of pr.
$${If}\:\:\:\:{x}^{\mathrm{4}} +{px}^{\mathrm{3}} +{qx}^{\mathrm{2}} +{rx}+\mathrm{5}\:=\:\mathrm{0} \\ $$$${has}\:{four}\:{real}\:{roots},\:{then}\:{find} \\ $$$$\:{the}\:{minimum}\:{value}\:{of}\:\boldsymbol{{pr}}. \\ $$
Commented by MJS last updated on 06/Oct/18
let me try...
$$\mathrm{let}\:\mathrm{me}\:\mathrm{try}… \\ $$
Answered by ajfour last updated on 06/Oct/18
x_1 x_2 x_3 x_4 = 5  Σx_1 x_2 x_3  = −r  x_1 +x_2 +x_3 +x_4  = −p  pr = 5((1/x_4 )+(1/x_2 )+(1/x_3 )+(1/x_4 ))Σ x_1        > 5×(4/x_c )×4x_c    (= 80) .  Hence min(pr) = 80 .
$${x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} {x}_{\mathrm{4}} =\:\mathrm{5} \\ $$$$\Sigma{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} \:=\:−{r} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}} \:=\:−{p} \\ $$$${pr}\:=\:\mathrm{5}\left(\frac{\mathrm{1}}{{x}_{\mathrm{4}} }+\frac{\mathrm{1}}{{x}_{\mathrm{2}} }+\frac{\mathrm{1}}{{x}_{\mathrm{3}} }+\frac{\mathrm{1}}{{x}_{\mathrm{4}} }\right)\Sigma\:{x}_{\mathrm{1}} \: \\ $$$$\:\:\:\:>\:\mathrm{5}×\frac{\mathrm{4}}{{x}_{{c}} }×\mathrm{4}{x}_{{c}} \:\:\:\left(=\:\mathrm{80}\right)\:. \\ $$$${Hence}\:{min}\left(\boldsymbol{{pr}}\right)\:=\:\mathrm{80}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *