Menu Close

If-x-5-1-3-3-and-y-4-3-1-3-Prove-that-x-y-lt-0-




Question Number 144839 by mathdanisur last updated on 29/Jun/21
If  x = (5)^(1/3)  + 3  and  y = 4 (3)^(1/3)   Prove that:  x - y < 0
Ifx=53+3andy=433Provethat:xy<0
Answered by ajfour last updated on 29/Jun/21
(x−3)^3 =5  y^3 =192   ...(i)  x^3 −9x^2 +27x−27=5   ...(ii)  subtracting  ..(i)  from (ii)  (x−y){[(x−y)+((3y)/2)]^2 +((3y^2 )/4)}  +9x^2 +27x+160=0  for x>0,   above eq. is true  only if  x−y<0 ; (and above  eq. is of course true).
(x3)3=5y3=192(i)x39x2+27x27=5(ii)subtracting..(i)from(ii)(xy){[(xy)+3y2]2+3y24}+9x2+27x+160=0forx>0,aboveeq.istrueonlyifxy<0;(andaboveeq.isofcoursetrue).
Commented by mathdanisur last updated on 29/Jun/21
thankyou Sir cool
thankyouSircool
Answered by Rakshay last updated on 29/Jun/21
suppose x−y≥0  i.e      ^3 (√5)+3−4^3 (√3)≥0         ⇒4^3 (√3)−^3 (√5)≤3.....(1)  ⇒  (4^3 (√3)−^3 (√5))^3 ≤27     (64)(3)−(5)−3(4 )(^3 (√(15)))(4^3 (√3)−^3 (√5))≤27  204−5−12(^3 (√(15)))(4^3 (√3) −^3 (√5))≤27  ⇒172−12(^3 (√(15)))(4^3 (√3)−^3 (√5))≤0  ⇒((172)/(12))≤(^3 (√(15)))(4^3 (√3)−^3 (√5))≤(3)(^3 (√(15)))  ⇒((172)/(36))≤^3 (√(15))( which isn′t true)   so our supposition is wrong, thus,  x−y<0
supposexy0i.e35+34330433353..(1)(43335)327(64)(3)(5)3(4)(315)(43335)27204512(315)(43335)2717212(315)(43335)017212(315)(43335)(3)(315)17236315(whichisnttrue)sooursuppositioniswrong,thus,xy<0
Commented by mathdanisur last updated on 29/Jun/21
thanks Sir cool
thanksSircool
Answered by mr W last updated on 29/Jun/21
(5)^(1/3) <(6)^(1/3) =((2×3))^(1/3) <((((27)/8)×3))^(1/3) =(3/2)×(3)^(1/3)   3=((9×3))^(1/3) <((((125)/8)×3))^(1/3) =(5/2)×(3)^(1/3)   x=(5)^(1/3) +3<(3/2)×(3)^(1/3) +(5/2)×(3)^(1/3) =4(3)^(1/3) =y  ⇒x−y<0
53<63=2×33<278×33=32×333=9×33<1258×33=52×33x=53+3<32×33+52×33=433=yxy<0
Commented by mathdanisur last updated on 29/Jun/21
cool Sir thanks
coolSirthanks

Leave a Reply

Your email address will not be published. Required fields are marked *