Menu Close

If-x-5-3-then-x-3-1-x-3-or-is-it-possible-at-all-




Question Number 122174 by AbdullahMohammadNurusSafa last updated on 14/Nov/20
If  x = (√(5 )) + (√3),then x^3  + (1/x^3 ) = ?  or, is it possible at all?
$${If}\:\:\boldsymbol{{x}}\:=\:\sqrt{\mathrm{5}\:}\:+\:\sqrt{\mathrm{3}},{then}\:\boldsymbol{{x}}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{3}} }\:=\:? \\ $$$$\boldsymbol{{or}},\:\boldsymbol{{is}}\:\boldsymbol{{it}}\:\boldsymbol{{possible}}\:\boldsymbol{{at}}\:\boldsymbol{{all}}? \\ $$
Answered by behi83417@gmail.com last updated on 14/Nov/20
x^3 +(1/x^3 )=(x+(1/x))^3 −3(x+(1/x))=  =(5(√5)+3(√3)+15(√3)+27(√5))−3((√5)+(√3))=  =29(√5)+15(√3) .
$$\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{3}} −\mathrm{3}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)= \\ $$$$=\left(\mathrm{5}\sqrt{\mathrm{5}}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{15}\sqrt{\mathrm{3}}+\mathrm{27}\sqrt{\mathrm{5}}\right)−\mathrm{3}\left(\sqrt{\mathrm{5}}+\sqrt{\mathrm{3}}\right)= \\ $$$$=\mathrm{29}\sqrt{\mathrm{5}}+\mathrm{15}\sqrt{\mathrm{3}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *