Menu Close

if-x-5-x-4-x-3-2x-2-x-1-0-find-x-3-1-x-3-




Question Number 153130 by mathdanisur last updated on 04/Sep/21
if   x^5 +x^4 +x^3 +2x^2 +x+1=0  find   x^3  - (1/x^3 ) = ?
ifx5+x4+x3+2x2+x+1=0findx31x3=?
Answered by ajfour last updated on 05/Sep/21
((x^6 −1)/(x−1))+x^2 =0  x^6 +x^3 −x^2 −1=0  (x^6 +x^3 −1)^3 =x^6   x^3 −(1/x^3 )=t  ⇒ x^6 =tx^3 +1  now   (t+1)^3 x^9 =tx^3 +1  (t+1)^3 (tx^3 +1)x^3 =tx^3 +1  ⇒ t(t+1)^3 (tx^3 +1)+x^3 =1  ⇒  x^3 =((1−t(t+1)^3 )/(1+t^2 (t+1)^3 ))  ((1−t(t+1)^3 )/(1+t^2 (t+1)^3 ))−((1+t^2 (t+1)^3 )/(1−t(t+1)^3 ))=t  ⇒ 1+t^2 (t+1)^6 −2t(t+1)^3   −1−t^4 (t+1)^6 −2t^2 (t+1)^3      =t−t^2 (t+1)^3 +t^3 (t+1)^3           −t^4 (t+1)^6   ⇒     t(t+1)^6 −(2+t+t^2 )(t+1)^3 =1  ⇒(t+1)^3 {t(t+1)^3 −t^2 −t−2}=1  ⇒  p^3 (p^3 t−pt−2)=1  &   p−t=1  ⇒ p^3 {t^2 (p+1)−2}=1  p^3 {(p+1)^3 −2}=1  p^3 q^3 =1+2p^3   q=p+1  p^3 (q^3 −p^3 )=1+p^3   p^3 (p^2 +q^2 +pq)=q(p^2 −p+1)  p^3 (1+3pq)=q(p^2 −p+1)  p^3 (3p^2 +3p+1)=1+p^3   3p^5 +3p^4 =1  p^4 (p+1)=(1/3)  ⇒  3(t+1)^4 t=1  now use any polynomial  calculator, say,wolframalpha.
x61x1+x2=0x6+x3x21=0(x6+x31)3=x6x31x3=tx6=tx3+1now(t+1)3x9=tx3+1(t+1)3(tx3+1)x3=tx3+1t(t+1)3(tx3+1)+x3=1x3=1t(t+1)31+t2(t+1)31t(t+1)31+t2(t+1)31+t2(t+1)31t(t+1)3=t1+t2(t+1)62t(t+1)31t4(t+1)62t2(t+1)3=tt2(t+1)3+t3(t+1)3t4(t+1)6t(t+1)6(2+t+t2)(t+1)3=1(t+1)3{t(t+1)3t2t2}=1p3(p3tpt2)=1&pt=1p3{t2(p+1)2}=1p3{(p+1)32}=1p3q3=1+2p3q=p+1p3(q3p3)=1+p3p3(p2+q2+pq)=q(p2p+1)p3(1+3pq)=q(p2p+1)p3(3p2+3p+1)=1+p33p5+3p4=1p4(p+1)=133(t+1)4t=1nowuseanypolynomialcalculator,say,wolframalpha.

Leave a Reply

Your email address will not be published. Required fields are marked *