Menu Close

If-x-5-x-7-x-6-dx-p-ln-x-q-x-q-1-C-find-the-value-of-p-and-q-




Question Number 118230 by bobhans last updated on 16/Oct/20
If ∫ ((((√x))^5 )/(((√x))^7 +x^6 )) dx = p ln ((x^q /(x^q +1))) + C   find the value of p and q.
If(x)5(x)7+x6dx=pln(xqxq+1)+Cfindthevalueofpandq.
Answered by bemath last updated on 16/Oct/20
I=∫ ((x^2 (√x))/(x^3 (√x)+x^6 )) dx = ∫ ((√x)/(x(√x)+x^4 )) dx  I= ∫ (dx/(x+x^3 (√x))) .  let (√x) = u → dx = 2(√x) du  I= ∫ ((2u du)/(u^2 +u^7 )) = ∫ ((2 du)/(u+u^6 ))  I=∫ ((2 du)/(u(1+u^5 )))= ∫(( 2(1+u^5 −u^5 ))/(u(1+u^5 )))du  =2∫ ((1/u)−(u^4 /(1+u^5 )))du  = 2(ln u−(1/5)∫ ((d(1+u^5 ))/(1+u^5 )))  =2(ln u−(1/5)ln (1+u^5 ))+c  = (2/5)(5ln u−ln (1+u^5 ))+c  =(2/5) ln ((u^5 /(1+u^5 ))) +c = p ln ((x^q /(1+x^q )))+c  =(2/5)ln ((x^(5/2) /(1+x^(5/2) )))+c = p ln ((x^q /(1+x^q )))+c   we get  { ((p=(2/5))),((q=(5/2))) :}
I=x2xx3x+x6dx=xxx+x4dxI=dxx+x3x.letx=udx=2xduI=2uduu2+u7=2duu+u6I=2duu(1+u5)=2(1+u5u5)u(1+u5)du=2(1uu41+u5)du=2(lnu15d(1+u5)1+u5)=2(lnu15ln(1+u5))+c=25(5lnuln(1+u5))+c=25ln(u51+u5)+c=pln(xq1+xq)+c=25ln(x521+x52)+c=pln(xq1+xq)+cweget{p=25q=52
Commented by bobhans last updated on 16/Oct/20
correct !
correct!

Leave a Reply

Your email address will not be published. Required fields are marked *