Menu Close

If-x-7-x-50-Find-the-value-of-the-expression-x-1-x-




Question Number 154973 by mathdanisur last updated on 23/Sep/21
If  x + (7/( (√x))) = 50  Find the value of the expression  (√x) - (1/( (√x))) = ?
$$\mathrm{If}\:\:\mathrm{x}\:+\:\frac{\mathrm{7}}{\:\sqrt{\mathrm{x}}}\:=\:\mathrm{50} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\sqrt{\mathrm{x}}\:-\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:=\:? \\ $$
Answered by mr W last updated on 23/Sep/21
let t=(√x)>0  t^3 −50t+7=0  (t−7)(t^2 +7t−1)=0  ⇒t=7 ✓  ⇒t=((−7+(√(53)))/2) ✓  ⇒t=((−7−(√(53)))/2) (rejected)  (√x)−(1/( (√x)))=t−(1/t)=7−(1/7)=((48)/7) or  (√x)−(1/( (√x)))=((−7+(√(53)))/2)−(2/(−7+(√(53))))=−7
$${let}\:{t}=\sqrt{{x}}>\mathrm{0} \\ $$$${t}^{\mathrm{3}} −\mathrm{50}{t}+\mathrm{7}=\mathrm{0} \\ $$$$\left({t}−\mathrm{7}\right)\left({t}^{\mathrm{2}} +\mathrm{7}{t}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{t}=\mathrm{7}\:\checkmark \\ $$$$\Rightarrow{t}=\frac{−\mathrm{7}+\sqrt{\mathrm{53}}}{\mathrm{2}}\:\checkmark \\ $$$$\Rightarrow{t}=\frac{−\mathrm{7}−\sqrt{\mathrm{53}}}{\mathrm{2}}\:\left({rejected}\right) \\ $$$$\sqrt{{x}}−\frac{\mathrm{1}}{\:\sqrt{{x}}}={t}−\frac{\mathrm{1}}{{t}}=\mathrm{7}−\frac{\mathrm{1}}{\mathrm{7}}=\frac{\mathrm{48}}{\mathrm{7}}\:{or} \\ $$$$\sqrt{{x}}−\frac{\mathrm{1}}{\:\sqrt{{x}}}=\frac{−\mathrm{7}+\sqrt{\mathrm{53}}}{\mathrm{2}}−\frac{\mathrm{2}}{−\mathrm{7}+\sqrt{\mathrm{53}}}=−\mathrm{7} \\ $$
Commented by mathdanisur last updated on 23/Sep/21
Very nice solution, Ser thankyou
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{solution},\:\boldsymbol{\mathrm{S}}\mathrm{er}\:\mathrm{thankyou} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *