Menu Close

If-x-a-2-bc-y-b-2-ca-z-c-2-ab-then-prove-that-x-3-y-3-z-3-3xyz-is-a-perfect-square-




Question Number 179157 by Agnibhoo98 last updated on 25/Oct/22
If x = a^2 − bc, y = b^2  − ca, z = c^2  − ab  then prove that,  x^3  + y^3  + z^3  − 3xyz is a perfect square.
Ifx=a2bc,y=b2ca,z=c2abthenprovethat,x3+y3+z33xyzisaperfectsquare.
Answered by som(math1967) last updated on 25/Oct/22
 x−y=a^2 −bc−b^2 +ca    =(a−b)(a+b) +c(a−b)  =(a−b)(a+b+c)   y−z=(b−c)(a+b+c)  z−x=(c−a)(a+b+c)  x^3 +y^3 +z^3 −3xyz  =(x+y+z)(x^2 +y^2 +z^2 −xy−yz−zx)  =(1/2)(x+y+z){(x−y)^2 +(y−z)^2 +(z−x)^2 }  =(a^2 +b^2 +c^2 −ab−bc−ca)    ×[(a+b+c)^2 {(a−b)^2 +(b−c)^2 +(c−a)^2 }  =(a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)  ×(1/2)(a+b+c){(a−b)^2 +(b−c)^2 +(c−a)^2 }  =(a^3 +b^3 +c^3 −3abc)(a^3 +b^3 +c^3 −3abc)  =(a^3 +b^3 +c^3 −3abc)^2   perfect square
xy=a2bcb2+ca=(ab)(a+b)+c(ab)=(ab)(a+b+c)yz=(bc)(a+b+c)zx=(ca)(a+b+c)x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)=12(x+y+z){(xy)2+(yz)2+(zx)2}=(a2+b2+c2abbcca)×[(a+b+c)2{(ab)2+(bc)2+(ca)2}=(a+b+c)(a2+b2+c2abbcca)×12(a+b+c){(ab)2+(bc)2+(ca)2}=(a3+b3+c33abc)(a3+b3+c33abc)=(a3+b3+c33abc)2perfectsquare

Leave a Reply

Your email address will not be published. Required fields are marked *