Menu Close

if-x-a-integer-number-when-divided-8-has-remainder-5-and-divided-5-has-remainder-2-find-x-




Question Number 101891 by bobhans last updated on 05/Jul/20
if x a integer number , when divided 8  has remainder 5 and divided 5 has remainder  2. find x
$${if}\:{x}\:{a}\:{integer}\:{number}\:,\:{when}\:{divided}\:\mathrm{8} \\ $$$${has}\:{remainder}\:\mathrm{5}\:{and}\:{divided}\:\mathrm{5}\:{has}\:{remainder} \\ $$$$\mathrm{2}.\:{find}\:{x} \\ $$
Answered by Rasheed.Sindhi last updated on 05/Jul/20
8−5=5−2=3  LCM(8,5)−3=40−3=37★
$$\mathrm{8}−\mathrm{5}=\mathrm{5}−\mathrm{2}=\mathrm{3} \\ $$$$\mathrm{LCM}\left(\mathrm{8},\mathrm{5}\right)−\mathrm{3}=\mathrm{40}−\mathrm{3}=\mathrm{37}\bigstar \\ $$
Commented by Rasheed.Sindhi last updated on 05/Jul/20
This approach works when the  difference of each divisor and  its remainder is same.  (lcm of divisors)−(diff. of divisor and remainder)
$${This}\:{approach}\:{works}\:{when}\:{the} \\ $$$${difference}\:{of}\:{each}\:{divisor}\:{and} \\ $$$${its}\:{remainder}\:{is}\:{same}. \\ $$$$\left(\mathrm{lcm}\:\mathrm{of}\:\mathrm{divisors}\right)−\left(\mathrm{diff}.\:\mathrm{of}\:\mathrm{divisor}\:\mathrm{and}\:\mathrm{remainder}\right) \\ $$
Commented by bemath last updated on 06/Jul/20
great sir
$${great}\:{sir} \\ $$
Answered by john santu last updated on 05/Jul/20
⇔x = 8p+5 ...(×5)  ⇔x = 5q+2... (×8)  ___________ −  −3x = 40(p−q)+9  3x = 40(q−p)−9  x = ((40(q−p))/3) −3   q−p must be 3k , k∈Z  (1)q−p=3 ⇔x = 37  (2)q−p=6 ⇔x= 77  (3)q−p=9⇔x=117  (4)q−p=12⇔x=157  and so on (JS ⊛)
$$\Leftrightarrow{x}\:=\:\mathrm{8}{p}+\mathrm{5}\:…\left(×\mathrm{5}\right) \\ $$$$\Leftrightarrow{x}\:=\:\mathrm{5}{q}+\mathrm{2}…\:\left(×\mathrm{8}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\:− \\ $$$$−\mathrm{3}{x}\:=\:\mathrm{40}\left({p}−{q}\right)+\mathrm{9} \\ $$$$\mathrm{3}{x}\:=\:\mathrm{40}\left({q}−{p}\right)−\mathrm{9} \\ $$$${x}\:=\:\frac{\mathrm{40}\left({q}−{p}\right)}{\mathrm{3}}\:−\mathrm{3}\: \\ $$$${q}−{p}\:{must}\:{be}\:\mathrm{3}{k}\:,\:{k}\in\mathbb{Z} \\ $$$$\left(\mathrm{1}\right){q}−{p}=\mathrm{3}\:\Leftrightarrow{x}\:=\:\mathrm{37} \\ $$$$\left(\mathrm{2}\right){q}−{p}=\mathrm{6}\:\Leftrightarrow{x}=\:\mathrm{77} \\ $$$$\left(\mathrm{3}\right){q}−{p}=\mathrm{9}\Leftrightarrow{x}=\mathrm{117} \\ $$$$\left(\mathrm{4}\right){q}−{p}=\mathrm{12}\Leftrightarrow{x}=\mathrm{157} \\ $$$${and}\:{so}\:{on}\:\left({JS}\:\circledast\right)\: \\ $$
Answered by floor(10²Eta[1]) last updated on 22/Jul/20
x≡5(mod 8)⇒x=5+8y, y∈Z  x≡2(mod 5)⇒5+8y≡2(mod 5)  ⇒8y≡2(mod 5), gcd(8,5)=1  ⇒4y≡1≡−4(mod 5), gcd(4, −4)=4∤5  ⇒y≡−1≡4(mod 5)⇒y=5z+4, z∈Z  x=5+8(5z+4)=40z+37  x∈(37, 77,117, ...)∪(−3, −43,...)
$$\mathrm{x}\equiv\mathrm{5}\left(\mathrm{mod}\:\mathrm{8}\right)\Rightarrow\mathrm{x}=\mathrm{5}+\mathrm{8y},\:\mathrm{y}\in\mathbb{Z} \\ $$$$\mathrm{x}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{5}+\mathrm{8y}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\Rightarrow\mathrm{8y}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right),\:\mathrm{gcd}\left(\mathrm{8},\mathrm{5}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{4y}\equiv\mathrm{1}\equiv−\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right),\:\mathrm{gcd}\left(\mathrm{4},\:−\mathrm{4}\right)=\mathrm{4}\nmid\mathrm{5} \\ $$$$\Rightarrow\mathrm{y}\equiv−\mathrm{1}\equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{y}=\mathrm{5z}+\mathrm{4},\:\mathrm{z}\in\mathbb{Z} \\ $$$$\mathrm{x}=\mathrm{5}+\mathrm{8}\left(\mathrm{5z}+\mathrm{4}\right)=\mathrm{40z}+\mathrm{37} \\ $$$$\mathrm{x}\in\left(\mathrm{37},\:\mathrm{77},\mathrm{117},\:…\right)\cup\left(−\mathrm{3},\:−\mathrm{43},…\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *