Menu Close

If-x-amp-y-are-both-positive-integers-then-then-show-if-it-possiple-that-x-2-y-1-amp-y-2-4x-3-be-both-perfect-squares-simultaneously-




Question Number 192797 by York12 last updated on 27/May/23
If x & y are both positive integers then  then show if it possiple that x^2 +y+1 & y^2  + 4x + 3 be both   perfect squares simultaneously.
$$\boldsymbol{{If}}\:\boldsymbol{{x}}\:\&\:\boldsymbol{{y}}\:\boldsymbol{{are}}\:\boldsymbol{{both}}\:\boldsymbol{{positive}}\:\boldsymbol{{integers}}\:\boldsymbol{{then}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{show}}\:\boldsymbol{{if}}\:\boldsymbol{{it}}\:\boldsymbol{{possiple}}\:\boldsymbol{{that}}\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}+\mathrm{1}\:\&\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{4}\boldsymbol{{x}}\:+\:\mathrm{3}\:\boldsymbol{{be}}\:\boldsymbol{{both}}\: \\ $$$$\boldsymbol{{perfect}}\:\boldsymbol{{squares}}\:\boldsymbol{{simultaneously}}. \\ $$
Answered by witcher3 last updated on 27/May/23
x=y⇒  x^2 +x+1=a^2   x^2 <x^2 +x+1=a^2 <(x+1)^2 ..impossibl  x<y⇒⇒x≤y+1  y^2 <y^2 +4x+3<y^2 +4y+4=(y+2)^2   ⇒y^2 +4x+3=(y+1)^2 =y^2 +2y+1  y=2x+1  x^2 +y+1=(x+1)^2 +1=a^2 ⇒1+(x+1)^2 =b^2   ⇒(b+x+1)=1 impossible x≥1  x>y⇒x≥y+1  ⇒x^2 <x^2 +y+1≤x^2 +x+1<(x+1)^2   impossible..
$$\mathrm{x}=\mathrm{y}\Rightarrow \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}=\mathrm{a}^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{2}} <\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}=\mathrm{a}^{\mathrm{2}} <\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} ..\mathrm{impossibl} \\ $$$$\mathrm{x}<\mathrm{y}\Rightarrow\Rightarrow\mathrm{x}\leqslant\mathrm{y}+\mathrm{1} \\ $$$$\mathrm{y}^{\mathrm{2}} <\mathrm{y}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}<\mathrm{y}^{\mathrm{2}} +\mathrm{4y}+\mathrm{4}=\left(\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}=\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{y}^{\mathrm{2}} +\mathrm{2y}+\mathrm{1} \\ $$$$\mathrm{y}=\mathrm{2x}+\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}+\mathrm{1}=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{a}^{\mathrm{2}} \Rightarrow\mathrm{1}+\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{b}+\mathrm{x}+\mathrm{1}\right)=\mathrm{1}\:\mathrm{impossible}\:\mathrm{x}\geqslant\mathrm{1} \\ $$$$\mathrm{x}>\mathrm{y}\Rightarrow\mathrm{x}\geqslant\mathrm{y}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} <\mathrm{x}^{\mathrm{2}} +\mathrm{y}+\mathrm{1}\leqslant\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}<\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{impossible}.. \\ $$$$ \\ $$
Commented by witcher3 last updated on 31/May/23
yes in Hight School Im in Team Select  but i didnt participated  to many stressed  in High school final i didnt Go withe the reste  im still regret this
$$\mathrm{yes}\:\mathrm{in}\:\mathrm{Hight}\:\mathrm{School}\:\mathrm{Im}\:\mathrm{in}\:\mathrm{Team}\:\mathrm{Select} \\ $$$$\mathrm{but}\:\mathrm{i}\:\mathrm{didnt}\:\mathrm{participated}\:\:\mathrm{to}\:\mathrm{many}\:\mathrm{stressed} \\ $$$$\mathrm{in}\:\mathrm{High}\:\mathrm{school}\:\mathrm{final}\:\mathrm{i}\:\mathrm{didnt}\:\mathrm{Go}\:\mathrm{withe}\:\mathrm{the}\:\mathrm{reste} \\ $$$$\mathrm{im}\:\mathrm{still}\:\mathrm{regret}\:\mathrm{this} \\ $$
Commented by York12 last updated on 27/May/23
I can not believe that this quesion was asked in CHMO  which is sometimes considered harder than  IMO
$${I}\:{can}\:{not}\:{believe}\:{that}\:{this}\:{quesion}\:{was}\:{asked}\:{in}\:{CHMO} \\ $$$${which}\:{is}\:{sometimes}\:{considered}\:{harder}\:{than} \\ $$$${IMO} \\ $$
Commented by witcher3 last updated on 28/May/23
IMO is for High school  but sum Quations Can bee tought  like IMO 2013
$$\mathrm{IMO}\:\mathrm{is}\:\mathrm{for}\:\mathrm{High}\:\mathrm{school} \\ $$$$\mathrm{but}\:\mathrm{sum}\:\mathrm{Quations}\:\mathrm{Can}\:\mathrm{bee}\:\mathrm{tought} \\ $$$$\mathrm{like}\:\mathrm{IMO}\:\mathrm{2013} \\ $$
Commented by York12 last updated on 28/May/23
I am a high scholar by the way   I have not seen it cause it is not involved  in the compenedium  so have you participated
$${I}\:{am}\:{a}\:{high}\:{scholar}\:{by}\:{the}\:{way}\: \\ $$$${I}\:{have}\:{not}\:{seen}\:{it}\:{cause}\:{it}\:{is}\:{not}\:{involved} \\ $$$${in}\:{the}\:{compenedium} \\ $$$${so}\:{have}\:{you}\:{participated}\: \\ $$
Commented by York12 last updated on 29/May/23
yeah you are right   but you have to look at CHMO past papers
$${yeah}\:{you}\:{are}\:{right}\: \\ $$$${but}\:{you}\:{have}\:{to}\:{look}\:{at}\:{CHMO}\:{past}\:{papers} \\ $$$$ \\ $$
Commented by York12 last updated on 06/Jun/23
i am sure you would be able to get a golden  medal
$${i}\:{am}\:{sure}\:{you}\:{would}\:{be}\:{able}\:{to}\:{get}\:{a}\:{golden} \\ $$$${medal} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *