Question Number 97266 by bobhans last updated on 07/Jun/20

Commented by bobhans last updated on 07/Jun/20

Answered by john santu last updated on 07/Jun/20

Commented by bobhans last updated on 07/Jun/20

Answered by Farruxjano last updated on 07/Jun/20
![x^2 +y^2 −4x−6y−1=0, min{x+y}=? x^2 +y^2 −4x−6y−1=0 ⇒(x−2)^2 +(y−3)^2 =14 (((x−2)/( (√(14)))))^2 +(((y−3)/( (√(14)))))^2 =1 ⇒ { ((((x−2)/( (√(14))))=sin𝛂 )),((((y−3)/( (√(14))))=cos𝛂)) :}⇒ ⇒ { ((x=(√(14))sin𝛂+2)),((y=(√(14))cos𝛂+3)) :}⇒x^2 +y^2 =14+ +4(√(14))sin𝛂+6(√(14))cos𝛂+4+9= =[using this inequality: asin𝛂+bcos𝛂≥ −(√(a^2 +b^2 ))]=27+[4(√(14))sin𝛂+6(√(14))cos𝛂]≥ ≥27+(√(16∙14+36∙14))=27−(√(52∙14))=27−(√(728))](https://www.tinkutara.com/question/Q97281.png)
Commented by bobhans last updated on 07/Jun/20

Commented by bobhans last updated on 07/Jun/20
