Menu Close

If-x-amp-y-satisfy-the-equation-x-2-y-2-4x-6y-1-0-find-minimum-value-of-x-y-




Question Number 97266 by bobhans last updated on 07/Jun/20
If x &y satisfy the equation x^2 +y^2 −4x−6y−1 =0  find minimum value of x+y ?
Ifx&ysatisfytheequationx2+y24x6y1=0findminimumvalueofx+y?
Commented by bobhans last updated on 07/Jun/20
f(x,y,λ) = x+y+λ(x^2 +y^2 −4x−6y−1)  (∂f/∂x) = 1+λ(2x−4)=0 ⇒λ = (1/(4−2x))  (∂f/∂y) = 1+λ(2y−6)=0 ⇒λ=(1/(6−2y))  so 4−2x = 6−2y ; y=1+x   substitute to constraint   x^2 +(x+1)^2 −4x−6(1+x)−1=0  2x^2 −8x−6=0 ; x^2 −4x−3=0  x = ((4 ±(√(28)))/2) = 2 ±(√7) ⇒ { ((x=2+(√7) ∧y=3+(√7))),((x=2−(√7) ∧y=3−(√7))) :}  so minimum value x+y = 5−2(√7) or 5 −(√(28))
f(x,y,λ)=x+y+λ(x2+y24x6y1)fx=1+λ(2x4)=0λ=142xfy=1+λ(2y6)=0λ=162yso42x=62y;y=1+xsubstitutetoconstraintx2+(x+1)24x6(1+x)1=02x28x6=0;x24x3=0x=4±282=2±7{x=2+7y=3+7x=27y=37sominimumvaluex+y=527or528
Answered by john santu last updated on 07/Jun/20
let x+y = k . because (x,y)  satisfy the circle x^2 +y^2 −4x−6y−1 = 0  then r = ((∣2+3−k∣)/( (√2) )) = (√(14))  ⇔∣k−5∣ = (√(28 ))   { ((k_(max)  = 5 + (√(28)))),((k_(min)  = 5−(√(28)) )) :}
letx+y=k.because(x,y)satisfythecirclex2+y24x6y1=0thenr=2+3k2=14⇔∣k5=28{kmax=5+28kmin=528
Commented by bobhans last updated on 07/Jun/20
great sir your short cut
greatsiryourshortcut
Answered by Farruxjano last updated on 07/Jun/20
x^2 +y^2 −4x−6y−1=0, min{x+y}=?  x^2 +y^2 −4x−6y−1=0 ⇒(x−2)^2 +(y−3)^2 =14  (((x−2)/( (√(14)))))^2 +(((y−3)/( (√(14)))))^2 =1 ⇒  { ((((x−2)/( (√(14))))=sin𝛂    )),((((y−3)/( (√(14))))=cos𝛂)) :}⇒  ⇒  { ((x=(√(14))sin𝛂+2)),((y=(√(14))cos𝛂+3)) :}⇒x^2 +y^2 =14+  +4(√(14))sin𝛂+6(√(14))cos𝛂+4+9=  =[using this inequality: asin𝛂+bcos𝛂≥  −(√(a^2 +b^2 ))]=27+[4(√(14))sin𝛂+6(√(14))cos𝛂]≥  ≥27+(√(16∙14+36∙14))=27−(√(52∙14))=27−(√(728))
x2+y24x6y1=0,min{x+y}=?x2+y24x6y1=0(x2)2+(y3)2=14(x214)2+(y314)2=1{x214=sinαy314=cosα{x=14sinα+2y=14cosα+3x2+y2=14++414sinα+614cosα+4+9==[usingthisinequality:asinα+bcosαa2+b2]=27+[414sinα+614cosα]27+1614+3614=275214=27728
Commented by bobhans last updated on 07/Jun/20
sorry sir. it wrong
sorrysir.itwrong
Commented by bobhans last updated on 07/Jun/20
it should be  { ((x = 2+(√(14)) cos α)),((y = 3+(√(14)) sin α)) :}  then x+y = 5 + (√(28)) cos (α−45^o ) ;  so min { x+y } = 5−(√(28)) .
itshouldbe{x=2+14cosαy=3+14sinαthenx+y=5+28cos(α45o);somin{x+y}=528.

Leave a Reply

Your email address will not be published. Required fields are marked *