Menu Close

If-x-and-y-are-positive-integers-and-2x-4y-3-then-find-16-x-256-y-




Question Number 179650 by Linton last updated on 31/Oct/22
If x and y are positive  integers and 2x−4y = 3  then find ((16^x )/(256^y ))
Ifxandyarepositiveintegersand2x4y=3thenfind16x256y
Commented by Rasheed.Sindhi last updated on 31/Oct/22
2x_(even) −4y_(even)  = 3 _(odd)   Difference of two even numbers  can′t be odd.   2x−4y = 3⇒x−2y=(3/2)  left side is an integer while right  side is non-integer rational!  Contradiction.
2xeven4yeven=3oddDifferenceoftwoevennumberscantbeodd.2x4y=3x2y=32leftsideisanintegerwhilerightsideisnonintegerrational!Contradiction.
Commented by CElcedricjunior last updated on 31/Oct/22
2x−4y=3=>x=2y+(3/2)  on a ((16^x )/(256^y ))=((16^(2y+(3/2)) )/(16^(2y) ))=16^(2y−2y+(3/2)) =16^(3/2) =4^3   =>((16^x )/(256^y ))=64     ................le celebre cedric junior......
2x4y=3=>x=2y+32ona16x256y=162y+32162y=162y2y+32=1632=43=>16x256y=64.lecelebrecedricjunior
Commented by Rasheed.Sindhi last updated on 31/Oct/22
((16^x )/(256^y ))=(4^(2x) /4^(4y) )=4^(2x−4y) =4^3 =64  [But x & y can′t be positive integers]
16x256y=42x44y=42x4y=43=64[Butx&ycantbepositiveintegers]

Leave a Reply

Your email address will not be published. Required fields are marked *