Menu Close

If-x-and-y-real-number-satisfy-x-5-2-y-12-2-196-then-the-minimum-value-of-x-2-y-2-is-




Question Number 96500 by bemath last updated on 02/Jun/20
If x and y real number satisfy  (x+5)^2 +(y−12)^2 =196 , then   the minimum value of x^2 +y^2  is
Ifxandyrealnumbersatisfy(x+5)2+(y12)2=196,thentheminimumvalueofx2+y2is
Answered by bobhans last updated on 02/Jun/20
Let x+5 = 14 cos θ , y−12=14sin θ  x^2 +y^2  = 365 + 28(12sin θ−5cos θ)  = 365 + 364 sin (θ−β) where tan β=(5/(12))  so x^2 +y^2  has the minimum value 1  when θ = ((3π)/2) + arctan ((5/(12))) , i.e  ⇒x = (5/(13)) & y = −((12)/(13))
Letx+5=14cosθ,y12=14sinθx2+y2=365+28(12sinθ5cosθ)=365+364sin(θβ)wheretanβ=512sox2+y2hastheminimumvalue1whenθ=3π2+arctan(512),i.ex=513&y=1213
Commented by bemath last updated on 02/Jun/20
thanks
thanks
Commented by 1549442205 last updated on 02/Jun/20
I add a question:Which is the greatest   value of  the expression x^2 +y^2  ?
Iaddaquestion:Whichisthegreatestvalueoftheexpressionx2+y2?
Commented by MJS last updated on 02/Jun/20
365+364=729
365+364=729
Commented by bobhans last updated on 02/Jun/20
yes===
yes===
Commented by bobhans last updated on 02/Jun/20
when θ = (π/2)+arctan (5/(12))
whenθ=π2+arctan512
Commented by 1549442205 last updated on 02/Jun/20
you are all right!it is as following:  we have x^2 +10x+25+y^2 −24y+144=196  ⇒x^2 +y^2 =27−10x+24y(1).Applyin  Bunhiacopxky′s inequality we get  (−10x+24y)^2 ≤(10^2 +24^2 )(x^2 +y^2 )  =676(x^2 +y^2 )⇒∣−10x+24y∣≤26(√(x^2 +y^2 )) (2)  From (1),(2)we get x^2 +y^2 ≤27  +26(√(x^2 +y^2 ))⇔((√(x^2 +y^2 )) +1)((√(x^2 +y^2 )) −27)≤0  ⇒(√(x^2 +y^2  )) ≤27⇒x^2 +y^2 ≤729.  The equality occurs if and only  if  { (((x/(−10))=(y/(24)))),((x^2 +y^2 =729)) :}⇔ { ((x=((−135)/(13)))),((y=((324)/(13)))) :}
youareallright!itisasfollowing:wehavex2+10x+25+y224y+144=196x2+y2=2710x+24y(1).ApplyinBunhiacopxkysinequalityweget(10x+24y)2(102+242)(x2+y2)=676(x2+y2)⇒∣10x+24y∣⩽26x2+y2(2)From(1),(2)wegetx2+y227+26x2+y2(x2+y2+1)(x2+y227)0x2+y227x2+y2729.Theequalityoccursifandonlyif{x10=y24x2+y2=729{x=13513y=32413
Answered by john santu last updated on 02/Jun/20
i have a method in short  if (x−a)^2 +(y−b)^2 =r^2   then x^2 +y^2    { ((max = {r+(√(a^2 +b^2 ))}^2 )),((min = {r−(√(a^2 +b^2 ))}^2 )) :}
ihaveamethodinshortif(xa)2+(yb)2=r2thenx2+y2{max={r+a2+b2}2min={ra2+b2}2
Commented by bobhans last updated on 02/Jun/20
waw====thanks
waw====thanks

Leave a Reply

Your email address will not be published. Required fields are marked *