Menu Close

If-x-C-find-solution-of-3-i-2-e-ix-




Question Number 95897 by john santu last updated on 28/May/20
If x∈C . find solution of   3+i(√2) = e^(ix)
IfxC.findsolutionof3+i2=eix
Answered by bobhans last updated on 28/May/20
3+i(√2) = e^(ix)    z = 3+i(√2) ⇒∣z∣ = (√(9+2)) = (√(11))  arg(z) = tan^(−1) (((√2)/3)) = 0.44  (√(11)) e^(0.44i)  = e^(ix)    ln((√(11))) + 0.44i = ix   1.199 +0.44i = ix   x = ((1.199+0.44i)/i)= 0.44−1.199i
3+i2=eixz=3+i2⇒∣z=9+2=11arg(z)=tan1(23)=0.4411e0.44i=eixln(11)+0.44i=ix1.199+0.44i=ixx=1.199+0.44ii=0.441.199i
Answered by abdomathmax last updated on 28/May/20
we have ∣3+i(√2)∣ =(√(11)) ⇒3+i(√2)=(√(11))e^(iarctan(((√2)/3)))   (e)⇒e^(ix)  =(√(11))e^(iarctan(((√2)/3)))  ⇒ix =ln((√(11)))+iarctan(((√2)/3))  ⇒x =−iln((√(11)))+arctan(((√2)/3))
wehave3+i2=113+i2=11eiarctan(23)(e)eix=11eiarctan(23)ix=ln(11)+iarctan(23)x=iln(11)+arctan(23)

Leave a Reply

Your email address will not be published. Required fields are marked *