Question Number 95897 by john santu last updated on 28/May/20
$$\mathrm{If}\:{x}\in\mathbb{C}\:.\:\mathrm{find}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{3}+{i}\sqrt{\mathrm{2}}\:=\:{e}^{{ix}} \: \\ $$
Answered by bobhans last updated on 28/May/20
$$\mathrm{3}+{i}\sqrt{\mathrm{2}}\:=\:{e}^{{ix}} \: \\ $$$${z}\:=\:\mathrm{3}+{i}\sqrt{\mathrm{2}}\:\Rightarrow\mid{z}\mid\:=\:\sqrt{\mathrm{9}+\mathrm{2}}\:=\:\sqrt{\mathrm{11}} \\ $$$$\mathrm{arg}\left({z}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\right)\:=\:\mathrm{0}.\mathrm{44} \\ $$$$\sqrt{\mathrm{11}}\:\mathrm{e}^{\mathrm{0}.\mathrm{44}{i}} \:=\:{e}^{{ix}} \: \\ $$$$\mathrm{ln}\left(\sqrt{\mathrm{11}}\right)\:+\:\mathrm{0}.\mathrm{44}{i}\:=\:{ix}\: \\ $$$$\mathrm{1}.\mathrm{199}\:+\mathrm{0}.\mathrm{44}{i}\:=\:{ix}\: \\ $$$${x}\:=\:\frac{\mathrm{1}.\mathrm{199}+\mathrm{0}.\mathrm{44}{i}}{{i}}=\:\mathrm{0}.\mathrm{44}−\mathrm{1}.\mathrm{199}{i}\: \\ $$
Answered by abdomathmax last updated on 28/May/20
$$\mathrm{we}\:\mathrm{have}\:\mid\mathrm{3}+\mathrm{i}\sqrt{\mathrm{2}}\mid\:=\sqrt{\mathrm{11}}\:\Rightarrow\mathrm{3}+\mathrm{i}\sqrt{\mathrm{2}}=\sqrt{\mathrm{11}}\mathrm{e}^{\mathrm{iarctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\right)} \\ $$$$\left(\mathrm{e}\right)\Rightarrow\mathrm{e}^{\mathrm{ix}} \:=\sqrt{\mathrm{11}}\mathrm{e}^{\mathrm{iarctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\right)} \:\Rightarrow\mathrm{ix}\:=\mathrm{ln}\left(\sqrt{\mathrm{11}}\right)+\mathrm{iarctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\right) \\ $$$$\Rightarrow\mathrm{x}\:=−\mathrm{iln}\left(\sqrt{\mathrm{11}}\right)+\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\right) \\ $$