Menu Close

If-x-gt-0-and-the-4-th-term-in-the-expansion-of-2-3-8-x-10-has-maximum-value-then-find-the-range-of-x-




Question Number 22047 by Tinkutara last updated on 10/Oct/17
If x > 0 and the 4^(th)  term in the expansion  of (2 + (3/8)x)^(10)  has maximum value  then find the range of x.
Ifx>0andthe4thtermintheexpansionof(2+38x)10hasmaximumvaluethenfindtherangeofx.
Commented by Tinkutara last updated on 10/Oct/17
I got the answer but my doubt is that  the interval for range will be open or  closed?
Igottheanswerbutmydoubtisthattheintervalforrangewillbeopenorclosed?
Answered by mrW1 last updated on 10/Oct/17
 (2 + (3/8)x)^(10)  =Σ_(k=0) ^(10)  C_k ^(10) ×2^k ×((3/8))^(10−k)  x^(10−k)   =((3/8))^(10) ×Σ_(k=0) ^(10)  C_k ^(10) ×(((16)/3))^k  x^(10−k)   let a_k = C_k ^(10) ×(((16)/3))^k  x^(10−k)   since 4th term is maximum,  ⇒a_2 <a_3   ⇒a_4 <a_3     C_2 ^(10) ×(((16)/3))^2 x^8 <C_3 ^(10) ×(((16)/3))^3 x^7   ⇒9x^8 <128x^7   ⇒x^7 (128−9x)>0  ⇒ { ((x>0)),((128−9x>0 ⇒ x<((128)/9))) :}    C_4 ^(10) ×(((16)/3))^4 x^6 <C_3 ^(10) ×(((16)/3))^3 x^7   ⇒x^6 (28−3x)<0  ⇒28−3x<0 ⇒x>((28)/3)  ⇒ { ((0<x<((128)/9))),((x>((28)/3))) :}      ⇒x∈(((28)/3),((128)/9))
(2+38x)10=10k=0Ck10×2k×(38)10kx10k=(38)10×10k=0Ck10×(163)kx10kletak=Ck10×(163)kx10ksince4thtermismaximum,a2<a3a4<a3C210×(163)2x8<C310×(163)3x79x8<128x7x7(1289x)>0{x>01289x>0x<1289C410×(163)4x6<C310×(163)3x7x6(283x)<0283x<0x>283{0<x<1289x>283x(283,1289)
Commented by mrW1 last updated on 10/Oct/17
I made a mistake, see correction.
Imadeamistake,seecorrection.
Commented by Tinkutara last updated on 11/Oct/17
(2,((64)/(21)))
(2,6421)
Commented by mrW1 last updated on 11/Oct/17
what is the answer?
whatistheanswer?
Answered by ajfour last updated on 14/Oct/17
⇒ (1+((3x)/(16)))^(10)  has its 4^(th ) term max.  ⇒^(10) C_2 z^2 < ^(10) C_3 z^3  >^(10) C_4 z^4                     where z=((3x)/(16))  ⇒  ((9×10)/2) < ( ((8×9×10)/6))z  > (((7×8×9×10)/(24)))z^2   ⇒  z > (3/8)   and  z < (4/7)  or   x > (3/8)×((16)/3)   and  x < (4/7)×((16)/3)  or  x∈ (2 , ((64)/(21)) ) .
(1+3x16)10hasits4thtermmax.10C2z2<10C3z3>10C4z4wherez=3x169×102<(8×9×106)z>(7×8×9×1024)z2z>38andz<47orx>38×163andx<47×163orx(2,6421).
Commented by Tinkutara last updated on 14/Oct/17
Why not closed interval?
Whynotclosedinterval?
Commented by Tinkutara last updated on 14/Oct/17
Thank you very much Sir!  But my only doubt was that it has to  be open or closed interval?
ThankyouverymuchSir!Butmyonlydoubtwasthatithastobeopenorclosedinterval?
Commented by ajfour last updated on 14/Oct/17
first guess closed interval ...
firstguessclosedinterval

Leave a Reply

Your email address will not be published. Required fields are marked *