Menu Close

if-x-gt-1-q-2-then-1-x-q-1-qx-q-1-x-2-




Question Number 147119 by mathdanisur last updated on 18/Jul/21
if   x>−1 , q≥2   then:  (1+x)^q  ≥ 1+qx+(q−1)x^2
ifx>1,q2then:(1+x)q1+qx+(q1)x2
Answered by mindispower last updated on 18/Jul/21
  1+qx+(q−1)x^2 =(q−1)(x+1)(x+(1/(q−1)))  ⇔(((1+x)^(q−1) )/(q−1))≥x+(1/(q−1))  ⇔(1+x)^(q−1) ≥(q−1)x+1  f(x)=(1+x)^(q−1) −((q−1)x+1)  f′(x)=(q−1)((1+x)^(q−2) −1)  f′(x)>0,x∈[0,∞[  f′(x)<0,x∈]−1,0[  ⇒∀x∈]−1,+∞[  ⇒f(x)≥f(0)=(1+0)^(q−1) −1=0  ⇒f(x)≥0⇔(1+x)^(q−1) ≥(q−1)x+1
1+qx+(q1)x2=(q1)(x+1)(x+1q1)(1+x)q1q1x+1q1(1+x)q1(q1)x+1f(x)=(1+x)q1((q1)x+1)f(x)=(q1)((1+x)q21)f(x)>0,x[0,[f(x)<0,x]1,0[x]1,+[f(x)f(0)=(1+0)q11=0f(x)0(1+x)q1(q1)x+1
Commented by mathdanisur last updated on 19/Jul/21
thank you Ser
thankyouSer
Answered by mathmax by abdo last updated on 19/Jul/21
⇒(1+x)^n ≥1+nx+(n−1)x^2  ⇒  p_n (x)=(1+x)^n −1−nx−(n−1)x^2 ≥0   (p_n )by recurrence on n  n=2 ⇒(1+x)^2 −1−2x−x^2  =0≥0 true  let suppose p_n (x)≥0 and prove p_(n+1) (x)≥0  p_(n+1) (x)=(1+x)^(n+1) −1−(n+1)x−nx^2   =(1+x)(1+x)^n −1−(n+1)x−nx^2   =(1+x){p_n (x)+1+nx+(n−1)x^2 }−1−(n+1)x−nx^2   =p_n (x)+1+nx+(n−1)x^2  +xp_n (x)+x+nx^2 +(n−1)x^3 −1−(n+1)x−nx^2   =(1+x)p_n (x)+(n−1)x^(2 ) +(n−1)x^3 ≥0 due to p_n ≥0 and n−1≥1
(1+x)n1+nx+(n1)x2pn(x)=(1+x)n1nx(n1)x20(pn)byrecurrenceonnn=2(1+x)212xx2=00trueletsupposepn(x)0andprovepn+1(x)0pn+1(x)=(1+x)n+11(n+1)xnx2=(1+x)(1+x)n1(n+1)xnx2=(1+x){pn(x)+1+nx+(n1)x2}1(n+1)xnx2=pn(x)+1+nx+(n1)x2+xpn(x)+x+nx2+(n1)x31(n+1)xnx2=(1+x)pn(x)+(n1)x2+(n1)x30duetopn0andn11
Commented by mathdanisur last updated on 19/Jul/21
thank you Ser
thankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *