Menu Close

If-x-is-a-complex-number-satisfying-x-2-x-1-0-what-is-the-value-of-x-53-x-52-x-51-x-50-x-49-




Question Number 117045 by bobhans last updated on 09/Oct/20
If x is a complex number satisfying   x^2 +x+1 = 0 , what is the value of  x^(53) +x^(52) +x^(51) +x^(50) +x^(49)  ?
Ifxisacomplexnumbersatisfyingx2+x+1=0,whatisthevalueofx53+x52+x51+x50+x49?
Answered by john santu last updated on 09/Oct/20
we know that x^2 +x+1 = ((x^3 −1)/(x−1)) , x≠1  since x^2 +x+1= 0, implies that x^3 =1  and x≠1 . Now x^(53) +x^(52) +x^(51) +x^(50) +x^(49) =  x^(51) (x^2 +x)+x^(49) (x^2 +x+1) =  x^(51) (−1)+x^(49) (0) = −x^(51) =−(x^3 )^(17)   = −(1)^(17)  = −1
weknowthatx2+x+1=x31x1,x1sincex2+x+1=0,impliesthatx3=1andx1.Nowx53+x52+x51+x50+x49=x51(x2+x)+x49(x2+x+1)=x51(1)+x49(0)=x51=(x3)17=(1)17=1
Answered by 1549442205PVT last updated on 09/Oct/20
P=x^(53) +x^(52) +x^(51) +x^(50) +x^(49)   =x^(53) +x^(52) +x^(51) +x^(50) +x^(49) +x^(48) −x^(48)   =x^(51) (x^2 +x+1)+x^(48) (x^2 +x+1)−x^(48)   =−x^(48) (since x^2 +x+1=0(by hypothesis))  From the hypothesis x^2 +x+1=0  we infer x=((−1±i(√3))/2)=cos120°±isin120°  Hence,by Mauvra′s formula we have  x^(48) =cos(48.120°)±isin(48.120°)  =cos(16.360°)±isin(16.360°)  =1±0=1⇒P=−x^(48) =−1
P=x53+x52+x51+x50+x49=x53+x52+x51+x50+x49+x48x48=x51(x2+x+1)+x48(x2+x+1)x48=x48(sincex2+x+1=0(byhypothesis))Fromthehypothesisx2+x+1=0weinferx=1±i32=cos120°±isin120°Hence,byMauvrasformulawehavex48=cos(48.120°)±isin(48.120°)=cos(16.360°)±isin(16.360°)=1±0=1P=x48=1
Answered by floor(10²Eta[1]) last updated on 09/Oct/20
x^2 +x+1=0⇒x^2 =−x−1  x^3 =−x^2 −x=x+1−x=1  ⇒x^(3k) =1^k =1 ∀ k∈N  x^(53) =x^(51) .x^2 =x^2   x^(52) =x^(51) .x=x  x^(51) =1  x^(50) =x^(48) .x^2 =x^2   x^(49) =x^(48) .x=x  ⇒x^(53) +x^(52) +x^(51) +x^(50) +x^(49)   =2(x^2 +x)+1=−2+1=−1
x2+x+1=0x2=x1x3=x2x=x+1x=1x3k=1k=1kNx53=x51.x2=x2x52=x51.x=xx51=1x50=x48.x2=x2x49=x48.x=xx53+x52+x51+x50+x49=2(x2+x)+1=2+1=1
Answered by Olaf last updated on 09/Oct/20
x^2 +x+1 = 0 = ((1−x^3 )/(1−x)) ⇒ x^3  = 1  x^2 +x+1 = 0 ⇒ x+(1/x) = −1  x^(53) +x^(52) +x^(51) +x^(50) +x^(49)  =  x^(51) (x^2 +x+1+(1/x)+(1/x^2 )) =  x^(51) [(x+(1/x))^2 −2+(x+(1/x))+1] =  x^(51) (1−2−1+1) = −x^(51)  = −(x^3 )^(17)  = −1
x2+x+1=0=1x31xx3=1x2+x+1=0x+1x=1x53+x52+x51+x50+x49=x51(x2+x+1+1x+1x2)=x51[(x+1x)22+(x+1x)+1]=x51(121+1)=x51=(x3)17=1

Leave a Reply

Your email address will not be published. Required fields are marked *