Menu Close

if-x-is-a-cube-root-of-a-unity-prove-that-1-x-6-27-




Question Number 111624 by mathdave last updated on 04/Sep/20
if x is a cube root of a unity  prove that   (1−x)^6 =−27
ifxisacuberootofaunityprovethat(1x)6=27
Answered by Her_Majesty last updated on 04/Sep/20
(1−ω)^6 =ω^6 −6ω^5 +15ω^4 −20ω^3 +15ω^2 −6ω+1=          =1  −6ω^2 +15ω  −20      +15ω^2 −6ω+1=  =9(ω+ω^2 )−18=−27
(1ω)6=ω66ω5+15ω420ω3+15ω26ω+1==16ω2+15ω20+15ω26ω+1==9(ω+ω2)18=27
Answered by $@y@m last updated on 04/Sep/20
(1−x)^6 ={(1−x)^3 }^2   ={1−x^3 −3x(1−x)}^2   ={1−1−3x(1−x)}^2   =9x^2 (1−2x+x^2 )  =9(x^2 −2x^3 +x^4 )  =9(x^2 −2+x)  =9(−2−1)  =−27
(1x)6={(1x)3}2={1x33x(1x)}2={113x(1x)}2=9x2(12x+x2)=9(x22x3+x4)=9(x22+x)=9(21)=27
Commented by Rasheed.Sindhi last updated on 04/Sep/20
Cool!
Cool!
Commented by $@y@m last updated on 04/Sep/20
Thanks
Thanks
Answered by mathdave last updated on 04/Sep/20
solution   let y^3 =1  y=(1)^(1/3) =(cos(0)+jsin(0))^(1/3)   to find the roots let  y=(cos2nπ+jsin2nπ)^(1/3)   y=(cos((2nπ)/3)+jsin((2nπ)/3))   putting n=0,1,2 which are the roots of the unity  at  y_n =y_0 =1..........(1)  y_1 =[cos((2π)/3)+jsin((2π)/3)]^1 =x  ..........(2),at   y_2 =[cos((4π)/3)+jsin((4π)/3)]^2 =x^2 ........(3)  adding (1),(2), and (3)  1+x+x^2 =1+cos((2π)/3)+jsin((2π)/3)+cos((4π)/3)+jsin((4π)/3)  1+x+x^2 =1+cos(π−(π/3))+jsin(π−(π/3))+cos(π+(π/3))+jsin(π+(π/3))  1+x+x^2 =1−cos(π/3)+jsin(π/3)−cos((.π)/3)−jsin(π/3)  1+x+x^2 =1−2cos(π/3)=1−2((1/2))=0  1+x+x^2 =0  1+x^2 =−x.........(1)  but (1−x)^6 =[(1−x)^2 ]^3   (1−x)^6 =(1−2x+x^2 )^3 =[(1+x^2 )−2x]^3   (1−x)^6 =(−x−2x)^3 =(−3x)^3   (1−x)^6 =−27x^3   but  x^3 =1  ∵(1−x)^6 =−27      Q.E.D
solutionlety3=1y=(1)13=(cos(0)+jsin(0))13tofindtherootslety=(cos2nπ+jsin2nπ)13y=(cos2nπ3+jsin2nπ3)puttingn=0,1,2whicharetherootsoftheunityatyn=y0=1.(1)y1=[cos2π3+jsin2π3]1=x.(2),aty2=[cos4π3+jsin4π3]2=x2..(3)adding(1),(2),and(3)1+x+x2=1+cos2π3+jsin2π3+cos4π3+jsin4π31+x+x2=1+cos(ππ3)+jsin(ππ3)+cos(π+π3)+jsin(π+π3)1+x+x2=1cosπ3+jsinπ3cos.π3jsinπ31+x+x2=12cosπ3=12(12)=01+x+x2=01+x2=x(1)but(1x)6=[(1x)2]3(1x)6=(12x+x2)3=[(1+x2)2x]3(1x)6=(x2x)3=(3x)3(1x)6=27x3butx3=1(1x)6=27Q.E.D
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *