Question Number 152063 by Tawa11 last updated on 25/Aug/21
$$\mathrm{If}\:\:\mathrm{x}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:\mathrm{and}\:\:\:\mathrm{y}\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{x}\:\:+\:\:\mathrm{1}}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\:\:\:\:\mid\mathrm{y}\:\:\:−\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\mid\:\:\:\leqslant\:\:\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Answered by mr W last updated on 25/Aug/21
$${y}=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$${y}=\mathrm{1}−\frac{{x}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$${y}=\mathrm{1}−\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}+\mathrm{1}} \\ $$$${x}+\frac{\mathrm{1}}{{x}}\geqslant\mathrm{2}\:{for}\:{x}>\mathrm{0} \\ $$$${x}+\frac{\mathrm{1}}{{x}}\leqslant−\mathrm{2}\:{for}\:{x}<\mathrm{0} \\ $$$${y}_{{max}} =\mathrm{1}−\frac{\mathrm{1}}{−\mathrm{2}+\mathrm{1}}=\mathrm{2} \\ $$$${y}_{{min}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}+\mathrm{1}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{2}}{\mathrm{3}}\leqslant{y}\leqslant\mathrm{2} \\ $$$$\Rightarrow−\frac{\mathrm{2}}{\mathrm{3}}\leqslant{y}−\frac{\mathrm{4}}{\mathrm{3}}\leqslant\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\mid{y}−\frac{\mathrm{4}}{\mathrm{3}}\mid\leqslant\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Commented by Tawa11 last updated on 25/Aug/21
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$
Commented by otchereabdullai@gmail.com last updated on 25/Aug/21
$$\mathrm{wow}! \\ $$
Answered by john_santu last updated on 25/Aug/21
$$\mathrm{y}=\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:\Rightarrow\mathrm{yx}^{\mathrm{2}} +\mathrm{yx}+\mathrm{y}=\mathrm{x}^{\mathrm{2}} +\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{y}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{yx}+\mathrm{y}−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Delta\geqslant\mathrm{0}\:\Rightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{y}^{\mathrm{2}} −\left(\mathrm{2y}−\mathrm{2}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{3y}−\mathrm{2}\right)\left(−\mathrm{y}+\mathrm{2}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{3y}−\mathrm{2}\right)\left(\mathrm{y}−\mathrm{2}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{2}}{\mathrm{3}}\leqslant\mathrm{y}\leqslant\mathrm{2}\:;\:\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{3}}\leqslant\mathrm{y}−\frac{\mathrm{4}}{\mathrm{3}}\leqslant\mathrm{2}−\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow−\frac{\mathrm{2}}{\mathrm{3}}\leqslant\mathrm{y}−\frac{\mathrm{4}}{\mathrm{3}}\leqslant\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mid\mathrm{y}−\frac{\mathrm{4}}{\mathrm{3}}\mid\leqslant\frac{\mathrm{2}}{\mathrm{3}}\:. \\ $$
Commented by Tawa11 last updated on 25/Aug/21
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$