Menu Close

if-x-is-a-real-number-in-0-1-then-the-value-of-lim-m-lim-n-1-cos-2m-n-pix-




Question Number 175147 by infinityaction last updated on 20/Aug/22
   if x is a real number in [0,1]     then the value of       lim_(m→∞ ) lim_(n→∞)  [1+cos^(2m) (n!πx)]
ifxisarealnumberin[0,1]thenthevalueoflimmlimn[1+cos2m(n!πx)]
Answered by floor(10²Eta[1]) last updated on 21/Aug/22
since cos(x) is limited then  −1≤lim_(n→∞) cos(n!πx)≤1  ⇒0≤lim_(n→∞) cos^(2m) (n!πx)≤1  lim_(x→∞) a^x =0 where 0≤a<1  ⇒lim_(m→∞) [lim_(n→∞) cos^(2m) (n!πx)]=0 when cos(n!πx)≠1  cos(n!πx)=1⇒n!πx=0⇒x=0    if x≠0⇒lim_(m→∞) lim_(n→∞) [1+cos^(2m) (n!πx)]=1  if x=0⇒lim_(m→∞) lim_(n→∞) [1+cos^(2m) (n!πx)]=2
sincecos(x)islimitedthen1limcosn(n!πx)10limcosn2m(n!πx)1limaxx=0where0a<1limm[limcosn2m(n!πx)]=0whencos(n!πx)1cos(n!πx)=1n!πx=0x=0ifx0limmlimn[1+cos2m(n!πx)]=1ifx=0limmlimn[1+cos2m(n!πx)]=2

Leave a Reply

Your email address will not be published. Required fields are marked *