Menu Close

If-x-is-real-number-satisfying-3x-1-2x-4-find-the-value-of-27x-3-1-8x-3-




Question Number 119692 by bemath last updated on 26/Oct/20
If x is real number satisfying  3x+(1/(2x))=4 , find the value of  27x^3 +(1/(8x^3 )) .
Ifxisrealnumbersatisfying3x+12x=4,findthevalueof27x3+18x3.
Commented by bemath last updated on 26/Oct/20
yes gave kudos
yesgavekudos
Answered by $@y@m last updated on 26/Oct/20
Use formula  a^3 +b^3 =(a+b)^3 −3ab(a+b)  and try yourself.  Ans:  46
Useformulaa3+b3=(a+b)33ab(a+b)andtryyourself.Ans:46
Answered by Ar Brandon last updated on 26/Oct/20
3x+(1/(2x))=4 ⇒ (3x+(1/(2x)))^2 =16  ⇒9x^2 +3+(1/(4x^2 ))=16⇒9x^2 +(1/(4x^2 ))=13  ⇒(9x^2 +(1/(4x^2 )))(3x+(1/(2x)))=13×4  ⇒27x^3 +((9x)/2)+(3/(4x))+(1/(8x^3 ))=52  ⇒(27x^3 +(1/(8x^3 )))=52−(3/2)(3x+(1/(2x)))=52−((3×4)/2)  ⇒27x^3 +(1/(8x^3 ))=46
3x+12x=4(3x+12x)2=169x2+3+14x2=169x2+14x2=13(9x2+14x2)(3x+12x)=13×427x3+9x2+34x+18x3=52(27x3+18x3)=5232(3x+12x)=523×4227x3+18x3=46
Answered by mathmax by abdo last updated on 26/Oct/20
(3x+(1/(2x)))=4 ⇒(3x+(1/(2x)))^3  =64 ⇒  27x^3 +3.(3x).(1/(2x))(3x+(1/(2x))) +(1/(8x^3 )) =64 ⇒  27x^3  +(1/(8x^3 )) +18 =64 ⇒27x^3  +(1/(8x^3 ))=64−18 =46
(3x+12x)=4(3x+12x)3=6427x3+3.(3x).12x(3x+12x)+18x3=6427x3+18x3+18=6427x3+18x3=6418=46

Leave a Reply

Your email address will not be published. Required fields are marked *