Menu Close

if-x-lt-1-find-x-2x-2-3x-3-




Question Number 151179 by mathdanisur last updated on 18/Aug/21
if  ∣x∣<1  find  x+2x^2 +3x^3 +...
$$\mathrm{if}\:\:\mid\boldsymbol{\mathrm{x}}\mid<\mathrm{1} \\ $$$$\mathrm{find}\:\:\mathrm{x}+\mathrm{2x}^{\mathrm{2}} +\mathrm{3x}^{\mathrm{3}} +… \\ $$
Answered by Olaf_Thorendsen last updated on 18/Aug/21
S(x) = Σ_(n=1) ^∞ nx^n   Let f(x) = (1/(1−x)) = Σ_(n=0) ^∞ x^n   f′(x) = (1/((1−x)^2 )) = Σ_(n=1) ^∞ nx^(n−1)   xf′(x) = (x/((1−x)^2 )) = Σ_(n=1) ^∞ nx^n  = S(x)
$$\mathrm{S}\left({x}\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nx}^{{n}} \\ $$$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \\ $$$${f}'\left({x}\right)\:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nx}^{{n}−\mathrm{1}} \\ $$$${xf}'\left({x}\right)\:=\:\frac{{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{nx}^{{n}} \:=\:\mathrm{S}\left({x}\right) \\ $$
Commented by mathdanisur last updated on 18/Aug/21
Thank you Ser
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$
Answered by qaz last updated on 19/Aug/21
Σ_(n=1) ^∞ nx^n   =Σ_(n=1) ^∞ Σ_(k=1) ^n x^n   =Σ_(k=1) ^∞ Σ_(n=0) ^∞ x^(n+k)   =(Σ_(k=1) ^∞ x^k )(Σ_(n=0) ^∞ x^n )  =(x/((1−x)^2 ))
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{nx}^{\mathrm{n}} \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{x}^{\mathrm{n}} \\ $$$$=\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{x}^{\mathrm{n}+\mathrm{k}} \\ $$$$=\left(\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{x}^{\mathrm{k}} \right)\left(\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{x}^{\mathrm{n}} \right) \\ $$$$=\frac{\mathrm{x}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} } \\ $$
Commented by mathdanisur last updated on 19/Aug/21
Thank you Ser
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *