Question Number 24286 by Joel577 last updated on 15/Nov/17
$$\mathrm{If}\:\mid{x}\mid\:<\:\mathrm{1}\:\mathrm{then} \\ $$$$\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)….. \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Answered by mrW1 last updated on 15/Nov/17
$${let}\:{P}_{{n}} =\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)…..\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}−\mathrm{1}\right)\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)…..\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)…..\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}^{\mathrm{4}} −\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)…..\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$…… \\ $$$$\left({x}−\mathrm{1}\right){P}_{{n}} =\left({x}^{\mathrm{2}^{{n}} } −\:\mathrm{1}\right)\left({x}^{\mathrm{2}^{{n}} } +\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right){P}_{{n}} ={x}^{\mathrm{2}^{{n}+\mathrm{1}} } −\mathrm{1} \\ $$$$\Rightarrow{P}_{{n}} =\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{P}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)…..=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$
Commented by math solver last updated on 16/Nov/17
$$\mathrm{sir},\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{your}\:\mathrm{last}\:\mathrm{step} \\ $$$$\mathrm{when}\:\mathrm{n}\:\mathrm{tending}\:\mathrm{to}\:\mathrm{infinity}? \\ $$
Commented by mrW1 last updated on 16/Nov/17
$${we}\:{have}\:{P}_{{n}} =\frac{\mathrm{1}−{x}^{\mathrm{2}^{{n}+\mathrm{1}} } }{\mathrm{1}−{x}} \\ $$$${when}\:{n}\rightarrow\infty, \\ $$$$\mathrm{2}^{{n}+\mathrm{1}} \rightarrow\infty \\ $$$${since}\:\mid{x}\mid<\mathrm{1} \\ $$$${x}^{\mathrm{2}^{{n}+\mathrm{1}} } \rightarrow\mathrm{0} \\ $$$${P}_{{n}} \rightarrow\frac{\mathrm{1}−\mathrm{0}}{\mathrm{1}−{x}}=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$
Commented by math solver last updated on 16/Nov/17
$$\mathrm{okk},\:\mathrm{i}\:\mathrm{didn}'\mathrm{t}\:\:\mathrm{read}\:\mid\mathrm{x}\mid\:<\:\mathrm{1}. \\ $$
Commented by Joel577 last updated on 16/Nov/17
$${thank}\:{you}\:{very}\:{much} \\ $$