Menu Close

If-x-R-a-1-a-2-a-3-b-1-b-2-b-3-gt-0-Then-prove-that-a-1-sin-2-x-b-1-cos-2-x-a-2-sin-2-x-b-2-cos-2-x-a-3-sin-2-x-b-3-cos-2-x-a-1-a-2-a-3-sin-2




Question Number 190677 by Shrinava last updated on 08/Apr/23
If  x ∈ R       a_1 ,a_2 ,a_3  , b_1 ,b_2 ,b_3  > 0  Then prove that:  a_1 ^(sin^2 x)  b_1 ^(cos^2 x)  + a_2 ^(sin^2 x)  b_2 ^(cos^2 x)  + a_3 ^(sin^2 x)  b_3 ^(cos^2 x)  ≤  ≤ (a_1 + a_2 + a_3 )^(sin^2 x)  (b_1 + b_2 + b_3 )^(cos^2 x)
$$\mathrm{If}\:\:\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,\mathrm{a}_{\mathrm{3}} \:,\:\mathrm{b}_{\mathrm{1}} ,\mathrm{b}_{\mathrm{2}} ,\mathrm{b}_{\mathrm{3}} \:>\:\mathrm{0} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{a}_{\mathrm{1}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{1}} ^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:+\:\mathrm{a}_{\mathrm{2}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{2}} ^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:+\:\mathrm{a}_{\mathrm{3}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{3}} ^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\leqslant \\ $$$$\leqslant\:\left(\mathrm{a}_{\mathrm{1}} +\:\mathrm{a}_{\mathrm{2}} +\:\mathrm{a}_{\mathrm{3}} \right)^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\left(\mathrm{b}_{\mathrm{1}} +\:\mathrm{b}_{\mathrm{2}} +\:\mathrm{b}_{\mathrm{3}} \right)^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *