Menu Close

if-x-sinx-than-prove-that-x-4-x-2-1-




Question Number 173893 by azadsir last updated on 20/Jul/22
if ∫(x) = sinx than prove that,             {∫(x)^4 } + {∫(x)}^2  = 1
$$\mathrm{if}\:\int\left(\mathrm{x}\right)\:=\:\mathrm{sinx}\:\mathrm{than}\:\mathrm{prove}\:\mathrm{that}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left\{\int\left(\mathrm{x}\right)^{\mathrm{4}} \right\}\:+\:\left\{\int\left(\mathrm{x}\right)\right\}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$
Commented by MJS_new last updated on 20/Jul/22
∫ is the integral sign...
$$\int\:\mathrm{is}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{sign}… \\ $$
Answered by floor(10²Eta[1]) last updated on 20/Jul/22
∫x doesn′t make any sense  where′s the dx?  ∫xdx=(x^2 /2)≠sinx
$$\int\mathrm{x}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{make}\:\mathrm{any}\:\mathrm{sense} \\ $$$$\mathrm{where}'\mathrm{s}\:\mathrm{the}\:\mathrm{dx}? \\ $$$$\int\mathrm{xdx}=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\neq\mathrm{sinx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *