Menu Close

if-x-x-1-x-x-3-1-x-2-x-5-1-x-5-x-7-1-x-7-show-that-0-1-x-x-1-3-x-1-5-x-1-7-ln-1-x-x-25832pi-2-1575-soltion-let-the-generating-se




Question Number 111813 by mathdave last updated on 05/Sep/20
if   ψ(x)=(x/(1−x))+(x^3 /(1−x^2 ))+(x^5 /(1−x^5 ))+(x^7 /(1−x^7 ))  show that   ∫_0 ^1 [ψ(x)+ψ((x)^(1/3) )+ψ((x)^(1/5) )+ψ((x)^(1/7) )]((ln((1/x)))/x)=((25832π^2 )/(1575))  soltion   let the generating series form of  ψ(x)=(x/(1−x))+(x^3 /(1−x^2 ))+(x^5 /(1−x^5 ))+(x^7 /(1−x^7 ))  be ψ(x)=Σ_(i=0) ^∞ (x^(2i+1) /(1−x^(2i+1) )).........(1)  from Ω=∫_0 ^1 ψ(x)+ψ((x)^(1/3) )+ψ((x)^(1/5) )+ψ((x)^(1/7) )((ln((1/x)))/x)dx  Ω=−∫_0 ^1 [ψ(x)+ψ(x^(1/3) )+ψ(x^(1/5) )+ψ(x^(1/7) )]((lnx)/x)dx  there the series form be  Ω=∫_0 ^1 [Σ_(n=0) ^∞ ψ(x^(1/(2n+1)) )((lnx)/x)]dx.........(2)  putting equation (1) into (2)  Ω=−∫_0 ^1 Σ_(n=0) ^∞ Σ_(i=0) ^∞ [(((x^(2i+1) .x^(1/(2n+1)) )/(1−x^(2i+1) .x^(1/(2n+1)) )))((lnx)/x)]dx  Ω=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 [((x^((2i+1)/(2n+1)) /(1−x^((2i+1)/(2n+1)) )))((lnx)/x)]dx  let y=((2i+1)/(2n+1))  Ω=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 [((x^y /(1−x^y )))((lnx)/x)]dx=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 ((x^(y−1) /(1−x^y )))lnxdx  let the series form of   (1/(1−x^y ))=Σ_(m=0) ^∞ x^(my)   Ω=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 (Σ_(m=0) ^∞ x^(my) .x^(y−1) lnx)dx  (∂/∂a)∣_(a=0) Ω(a)=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ ∫_0 ^1 (x^(my) .x^(y−1) .x^a )dx  (∂/∂a)∣_(a=0) Ω(a)=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ ∫_0 ^1 x^(my+y+a−1) dx  (∂/∂a)∣_(a=0) Ω(a)=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ ((1/(my+y+a)))  Ω^′ (0)=Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ [(1/((my+y)^2 ))]=(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )Σ_(m=0) ^∞ (1/((1+m)^2 ))  let z=1+m at m=0  ,z=1  Ω(0)=(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )Σ_(z=1) ^∞ (1/z^2 )=(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )ζ(2)=(π^2 /6)(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )  but y=((2i+1)/(2n+1))  Ω(0)=(π^2 /6)(Σ_(n=0) ^∞ Σ_(i=0) ^∞ (1/((((2i+1)/(2n+1)))^2 )))=(π^2 /6)Σ_(n=0) ^∞ (2n+1)^2 Σ_(i=0) ^∞ (1/((2i+1)^2 ))  Ω=(π^2 /6)[1^2 +3^2 +5^2 +7^2 ]×[(1/1^2 )+(1/3^2 )+(1/5^2 )+(1/7^2 )]  Ω=(π^2 /6)(1+9+25+49)×[(1/1)+(1/9)+(1/(25))+(1/(49))]  Ω=(π^2 /6)•(84)•((12916)/(11025))=((25832π^2 )/(1575))  ∵∫_0 ^1 [ψ(x)+ψ((x)^(1/3) )+ψ((x)^(1/5) )+ψ((x)^(1/7) )]((ln((1/x)))/x)=((25832π^2 )/(1575))  by mathew monday(05/09/2020)
ifψ(x)=x1x+x31x2+x51x5+x71x7showthat01[ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)]ln(1x)x=25832π21575soltionletthegeneratingseriesformofψ(x)=x1x+x31x2+x51x5+x71x7beψ(x)=i=0x2i+11x2i+1(1)fromΩ=01ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)ln(1x)xdxΩ=01[ψ(x)+ψ(x13)+ψ(x15)+ψ(x17)]lnxxdxtheretheseriesformbeΩ=01[n=0ψ(x12n+1)lnxx]dx(2)puttingequation(1)into(2)Ω=01n=0i=0[(x2i+1.x12n+11x2i+1.x12n+1)lnxx]dxΩ=n=0i=001[(x2i+12n+11x2i+12n+1)lnxx]dxlety=2i+12n+1Ω=n=0i=001[(xy1xy)lnxx]dx=n=0i=001(xy11xy)lnxdxlettheseriesformof11xy=m=0xmyΩ=n=0i=001(m=0xmy.xy1lnx)dxaa=0Ω(a)=n=0i=0m=001(xmy.xy1.xa)dxaa=0Ω(a)=n=0i=0m=001xmy+y+a1dxaa=0Ω(a)=n=0i=0m=0(1my+y+a)Ω(0)=n=0i=0m=0[1(my+y)2]=(n=0i=0)1y2m=01(1+m)2letz=1+matm=0,z=1Ω(0)=(n=0i=0)1y2z=11z2=(n=0i=0)1y2ζ(2)=π26(n=0i=0)1y2buty=2i+12n+1Ω(0)=π26(n=0i=01(2i+12n+1)2)=π26n=0(2n+1)2i=01(2i+1)2Ω=π26[12+32+52+72]×[112+132+152+172]Ω=π26(1+9+25+49)×[11+19+125+149]Ω=π26(84)1291611025=25832π2157501[ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)]ln(1x)x=25832π21575bymathewmonday(05/09/2020)
Commented by mnjuly1970 last updated on 05/Sep/20
very excellent and very  contentful...p.b.u.y
veryexcellentandverycontentfulp.b.u.y
Commented by Don08q last updated on 05/Sep/20
Good job
Goodjob
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *