Menu Close

if-x-y-0-pi-2-then-1-1-sinx-siny-1-cosx-cosy-2-2-




Question Number 160550 by HongKing last updated on 01/Dec/21
if   x;y∈(0;(π/2))  then:  (1/((1/(sinx + siny)) + (1/(cosx + cosy)))) ≤ ((√2)/2)
$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{sin}\boldsymbol{\mathrm{x}}\:+\:\mathrm{sin}\boldsymbol{\mathrm{y}}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cos}\boldsymbol{\mathrm{y}}}}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 02/Dec/21
LHS  ≤(1/((1/(2(√(sin x sin y))))+(1/(2(√(cos x cos y))))))  ≤(2/(2(√(√(1/(sin x cos x sin y cos y))))))  =(1/( (√(√(4/(sin 2x sin 2y))))))  =((√(√(sin 2x sin 2y)))/( (√2)))  ≤(1/( (√2)))=((√2)/2)
$${LHS} \\ $$$$\leqslant\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{sin}\:{x}\:\mathrm{sin}\:{y}}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{cos}\:{x}\:\mathrm{cos}\:{y}}}} \\ $$$$\leqslant\frac{\mathrm{2}}{\mathrm{2}\sqrt{\sqrt{\frac{\mathrm{1}}{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\:\mathrm{sin}\:{y}\:\mathrm{cos}\:{y}}}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\sqrt{\frac{\mathrm{4}}{\mathrm{sin}\:\mathrm{2}{x}\:\mathrm{sin}\:\mathrm{2}{y}}}}} \\ $$$$=\frac{\sqrt{\sqrt{\mathrm{sin}\:\mathrm{2}{x}\:\mathrm{sin}\:\mathrm{2}{y}}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by HongKing last updated on 02/Dec/21
thank you so much my dear Sir cool
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\boldsymbol{\mathrm{Sir}}\:\mathrm{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *