Menu Close

if-x-y-2-xy-1-5-2-and-x-2-y-2-5-find-1-x-1-y-




Question Number 153128 by mathdanisur last updated on 04/Sep/21
if   ((x+y)/2) + (√(xy)) = ((1+(√5))/2)  and  x^2 +y^2 =(√5)  find   (1/x) + (1/y) = ?
$$\mathrm{if}\:\:\:\frac{\mathrm{x}+\mathrm{y}}{\mathrm{2}}\:+\:\sqrt{\mathrm{xy}}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\sqrt{\mathrm{5}} \\ $$$$\mathrm{find}\:\:\:\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:? \\ $$
Answered by EDWIN88 last updated on 05/Sep/21
   { ((x+y=u)),((xy=v)) :}⇒ { ((u+2(√v) =1+(√5))),((u^2 −2v=(√5))) :}    { ((2(√v)=(1+(√5))−u)),((2v=u^2 −(√5))) :}    { ((4v=6+2(√5)u+u^2 )),((4v=2u^2 −2(√5))) :}  ⇔ 2u^2 −2(√5)=u^2 +2(√5)u+6  ⇔u^2 −2(√5)u−(2(√5)−6)=0  ⇔u=((2(√5)±(√(8(√5)−4)))/2)=(√5)±(√(2(√5)−1))  ⇔v=((u^2 −(√5))/2)=((4+2(√5)±2(√(10(√5)−5)))/2)  ⇔v=2+(√5)±(√(10(√5)−5))  ⇔(1/x)+(1/y)=(u/v)=(((√5)±(√(2(√5)−1)))/(2+(√5)±(√(10(√5)−5))))
$$\:\:\begin{cases}{{x}+{y}={u}}\\{{xy}={v}}\end{cases}\Rightarrow\begin{cases}{{u}+\mathrm{2}\sqrt{{v}}\:=\mathrm{1}+\sqrt{\mathrm{5}}}\\{{u}^{\mathrm{2}} −\mathrm{2}{v}=\sqrt{\mathrm{5}}}\end{cases} \\ $$$$\:\begin{cases}{\mathrm{2}\sqrt{{v}}=\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)−{u}}\\{\mathrm{2}{v}={u}^{\mathrm{2}} −\sqrt{\mathrm{5}}}\end{cases} \\ $$$$\:\begin{cases}{\mathrm{4}{v}=\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}{u}+{u}^{\mathrm{2}} }\\{\mathrm{4}{v}=\mathrm{2}{u}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{5}}}\end{cases} \\ $$$$\Leftrightarrow\:\mathrm{2}{u}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{5}}={u}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{5}}{u}+\mathrm{6} \\ $$$$\Leftrightarrow{u}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{5}}{u}−\left(\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\Leftrightarrow{u}=\frac{\mathrm{2}\sqrt{\mathrm{5}}\pm\sqrt{\mathrm{8}\sqrt{\mathrm{5}}−\mathrm{4}}}{\mathrm{2}}=\sqrt{\mathrm{5}}\pm\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{1}} \\ $$$$\Leftrightarrow{v}=\frac{{u}^{\mathrm{2}} −\sqrt{\mathrm{5}}}{\mathrm{2}}=\frac{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}}\pm\mathrm{2}\sqrt{\mathrm{10}\sqrt{\mathrm{5}}−\mathrm{5}}}{\mathrm{2}} \\ $$$$\Leftrightarrow{v}=\mathrm{2}+\sqrt{\mathrm{5}}\pm\sqrt{\mathrm{10}\sqrt{\mathrm{5}}−\mathrm{5}} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{{u}}{{v}}=\frac{\sqrt{\mathrm{5}}\pm\sqrt{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{1}}}{\mathrm{2}+\sqrt{\mathrm{5}}\pm\sqrt{\mathrm{10}\sqrt{\mathrm{5}}−\mathrm{5}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *