Menu Close

If-x-y-and-z-be-the-pth-qth-and-rth-terms-of-an-AP-show-that-determinant-p-q-r-x-y-z-1-1-1-0-




Question Number 175838 by Rasheed.Sindhi last updated on 08/Sep/22
If x,y and z be the pth, qth and rth  terms of an AP, show that   determinant ((p,q,r),(x,y,z),(1,1,1))=0
Ifx,yandzbethepth,qthandrthtermsofanAP,showthat|pqrxyz111|=0
Answered by Rasheed.Sindhi last updated on 08/Sep/22
 determinant ((p,q,r),(x,y,z),(1,1,1))=0   determinant ((p,q,r),((a+(p−1)d),(a+(q−1)d),(a+(q−1)d)),(1,1,1))  = determinant ((p,q,r),((a−d+pd),(a−d+qd),(a−d+qd)),(1,1,1))  = determinant ((p,q,r),((a−d),(a−d),(a−d)),(1,1,1))[R2−R1∙d]  =(a−d) determinant ((p,q,r),(1,1,1),(1,1,1))=(a−d)∙0=0  [Two rows are identical]  Proved
|pqrxyz111|=0|pqra+(p1)da+(q1)da+(q1)d111|=|pqrad+pdad+qdad+qd111|=|pqradadad111|[R2R1d]=(ad)|pqr111111|=(ad)0=0[Tworowsareidentical]Proved
Answered by som(math1967) last updated on 08/Sep/22
 determinant ((p,q,r),((a+pd−d),(a+qd−d),(a+rd−d)),(1,1,1))  C_1 ^l →C_1 −C_2  ,C_2 ^l →C_2 −C_3    determinant (((p−q),(q−r),r),(((p−q)d),((q−r)d),(a+rd−d)),(0,0,1))  (p−q)(q−r) determinant ((1,1,r),(d,d,(a+rd−d)),(0,0,1))  =(p−q)(q−r)×0 [C_1 ,C_2  identical]  =0
|pqra+pdda+qdda+rdd111|C1lC1C2,C2lC2C3|pqqrr(pq)d(qr)da+rdd001|(pq)(qr)|11rdda+rdd001|=(pq)(qr)×0[C1,C2identical]=0
Commented by Rasheed.Sindhi last updated on 08/Sep/22
Good sir, thank you!
Goodsir,thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *