Menu Close

if-x-y-gt-0-then-prove-that-x-x-2-x-1-y-y-2-y-1-xy-x-2-y-2-xy-1-x-2-x-2-x-1-y-2-y-2-y-1-1-x-2-y-2-xy-1-




Question Number 157871 by HongKing last updated on 29/Oct/21
if   x;y>0   then prove that:  (x/(x^2 -x+1)) + (y/(y^2 -y+1)) + ((xy)/(x^2 y^2 -xy+1)) ≤  ≤ (x^2 /(x^2 -x+1)) + (y^2 /(y^2 -y+1)) + (1/(x^2 y^2 -xy+1))
$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y}>\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} -\mathrm{x}+\mathrm{1}}\:+\:\frac{\mathrm{y}}{\mathrm{y}^{\mathrm{2}} -\mathrm{y}+\mathrm{1}}\:+\:\frac{\mathrm{xy}}{\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} -\mathrm{xy}+\mathrm{1}}\:\leqslant \\ $$$$\leqslant\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} -\mathrm{x}+\mathrm{1}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{y}^{\mathrm{2}} -\mathrm{y}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} -\mathrm{xy}+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *