Menu Close

If-x-y-gt-0-then-xy-x-y-2-x-y-2-xy-




Question Number 99645 by bramlex last updated on 22/Jun/20
If x,y > 0 then ∣(√(xy))−((x+y)/2)∣ + ∣((x+y)/2) + (√(xy)) ∣ =
Ifx,y>0thenxyx+y2+x+y2+xy=
Commented by bemath last updated on 22/Jun/20
since (√(xy)) > 0 & ((x+y)/2) > 0  so ((x+y)/2) + (√(xy)) > 0  case(1) if (√(xy))−((x+y)/2) > 0  then (√(xy)) −((x+y)/2) + ((x+y)/2) +(√(xy)) = 2(√(xy ))  case(2) if (√(xy))−((x+y)/2) < 0  then −(√(xy))+((x+y)/2) + ((x+y)/2)+(√(xy)) = x+y
sincexy>0&x+y2>0sox+y2+xy>0case(1)ifxyx+y2>0thenxyx+y2+x+y2+xy=2xycase(2)ifxyx+y2<0thenxy+x+y2+x+y2+xy=x+y
Answered by Farruxjano last updated on 22/Jun/20
When x,y>0 ⇒ ((x+y)/2) + (√(xy))>0  ⇒  ∣((x+y)/2) + (√(xy)) ∣=((x+y)/2) + (√(xy))  We know inequality Koshi:  ((x+y)/2)≥(√(xy))   when  x,y>0  So,  ∣(√(xy))−((x+y)/2)∣=((x+y)/2)−(√(xy))    ∣(√(xy))−((x+y)/2)∣ + ∣((x+y)/2) + (√(xy)) ∣ =((x+y)/2)−(√(xy))+  +((x+y)/2) + (√(xy))=x+y ▲.
Whenx,y>0x+y2+xy>0x+y2+xy∣=x+y2+xyWeknowinequalityKoshi:x+y2xywhenx,y>0So,xyx+y2∣=x+y2xyxyx+y2+x+y2+xy=x+y2xy++x+y2+xy=x+y.

Leave a Reply

Your email address will not be published. Required fields are marked *