Menu Close

if-x-y-R-and-x-3-y-3-16-prove-that-x-4-y-4-2x-2-y-2-4x-36-




Question Number 155618 by mathdanisur last updated on 02/Oct/21
if  x;y∈R  and  x^3 +y^3 =16  prove that:  x^4  + y^4  + 2x^2  + y^2  ≥ 4x + 36
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y}\in\mathbb{R}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{16}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \:+\:\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\geqslant\:\mathrm{4x}\:+\:\mathrm{36} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *