Menu Close

If-x-y-R-x-2-xy-4-0-ax-2-b-y-2-x-4a-0-Find-the-minimum-of-a-2-1-2-b-2-




Question Number 108171 by ZiYangLee last updated on 15/Aug/20
If x,y∈R  x^2 −xy+4=0  ax^2 +(b+y^2 )x+4a=0  Find the minimum of a^2 +(1/2)b^2
Ifx,yRx2xy+4=0ax2+(b+y2)x+4a=0Findtheminimumofa2+12b2
Answered by mr W last updated on 15/Aug/20
case 1: a=0  from (ii):  (b+y^2 )x=0  ⇒x=0 ⇒impossible, otherwise 4=0!  ⇒b+y^2 =0  from (i):  Δ=y^2 −4×4≥0  −b−16≥0  b≤−16  a^2 +(b^2 /2)=(b^2 /2)≥((16^2 )/2)=128    case 2: a≠0  Δ=y^2 −4×4≥0 ⇒y^2 ≥16⇒y≤−4 or ≥4  ax^2 −axy+4a=0   ...(iii)  (ii)−(iii):  (b+y^2 )x+axy=0  x(y^2 +ay+b)=0  ⇒x=0 ⇒impossible, otberwise 4=0!  ⇒y^2 +ay+b=0  Δ=a^2 −4b≥0  y_1 =((−a−(√Δ))/2), y_2 =((−a+(√Δ))/2)  case 2.1:(√())  y_2 =((−a+(√Δ))/2)≤−4  −a+(√Δ)≤−8  a≥8+(√Δ)  ⇒a≥8 and b≥16  ⇒a^2 +(b^2 /2)≥192  case 2.2:(√())  y_1 =((−a−(√Δ))/2)≥4  a(√())≤−8−(√Δ)  ⇒a≤−8 and b≤−16  ⇒a^2 +(b^2 /2)≥192  case 2.3:(√())  y_1 =((−a−(√Δ))/2)≤−4  a≥8−(√Δ)  y_2 =((−a+(√Δ))/2)≥4  a≤−(8−(√Δ))  ⇒a=0, b=−16
case1:a=0from(ii):(b+y2)x=0x=0impossible,otherwise4=0!b+y2=0from(i):Δ=y24×40b160b16a2+b22=b221622=128case2:a0Δ=y24×40y216y4or4ax2axy+4a=0(iii)(ii)(iii):(b+y2)x+axy=0x(y2+ay+b)=0x=0impossible,otberwise4=0!y2+ay+b=0Δ=a24b0y1=aΔ2,y2=a+Δ2case2.1:y2=a+Δ24a+Δ8a8+Δa8andb16a2+b22192case2.2:y1=aΔ24a8Δa8andb16a2+b22192case2.3:y1=aΔ24a8Δy2=a+Δ24a(8Δ)a=0,b=16
Commented by mr W last updated on 15/Aug/20
answer is 128
answeris128
Commented by ZiYangLee last updated on 15/Aug/20
answer is ((128)/9)
answeris1289

Leave a Reply

Your email address will not be published. Required fields are marked *