Menu Close

If-x-y-x-y-y-x-1-x-x-gt-0-and-y-gt-0-then-Find-the-value-of-x-y-




Question Number 191529 by MATHEMATICSAM last updated on 25/Apr/23
If ((x − y)/(x(√y) + y(√x))) = (1/( (√x))) ; (x > 0 and y > 0) then  Find the value of (x/y) .
$$\mathrm{If}\:\frac{{x}\:−\:{y}}{{x}\sqrt{{y}}\:+\:{y}\sqrt{{x}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}}}\:;\:\left({x}\:>\:\mathrm{0}\:\mathrm{and}\:{y}\:>\:\mathrm{0}\right)\:\mathrm{then} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{{x}}{{y}}\:. \\ $$
Answered by mehdee42 last updated on 25/Apr/23
((((√x)−(√y))((√x)+(√y)))/( (√(xy))((√x)+(√y))))=(1/( (√x)))  x−(√(xy))=(√(xy))⇒x=2(√(xy))⇒(x/y)=4 ✓
$$\frac{\left(\sqrt{{x}}−\sqrt{{y}}\right)\left(\sqrt{{x}}+\sqrt{{y}}\right)}{\:\sqrt{{xy}}\left(\sqrt{{x}}+\sqrt{{y}}\right)}=\frac{\mathrm{1}}{\:\sqrt{{x}}} \\ $$$${x}−\sqrt{{xy}}=\sqrt{{xy}}\Rightarrow{x}=\mathrm{2}\sqrt{{xy}}\Rightarrow\frac{{x}}{{y}}=\mathrm{4}\:\checkmark \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 25/Apr/23
 ((x − y)/(x(√y) + y(√x))) = (1/( (√x)))   ((((√x) )^2  − ((√y) )^2 )/( ((√x) )^2 (√y) + ((√y) )^2 (√x))) = (1/( (√x)))   ((((√x)  − (√y) )((√x)  + (√y) ))/( (√x) (√y) ((√x) +(√y) ))) = (1/( (√x)))   ((((√x)  − (√y) ))/(  (√y) )) = 1    (√x) =2(√y)  (((√x) )/( (√y)))=2  (x/y)=4
$$\:\frac{{x}\:−\:{y}}{{x}\sqrt{{y}}\:+\:{y}\sqrt{{x}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}}} \\ $$$$\:\frac{\left(\sqrt{{x}}\:\right)^{\mathrm{2}} \:−\:\left(\sqrt{{y}}\:\right)^{\mathrm{2}} }{\:\left(\sqrt{{x}}\:\right)^{\mathrm{2}} \sqrt{{y}}\:+\:\left(\sqrt{{y}}\:\right)^{\mathrm{2}} \sqrt{{x}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}}} \\ $$$$\:\frac{\left(\sqrt{{x}}\:\:−\:\sqrt{{y}}\:\right)\cancel{\left(\sqrt{{x}}\:\:+\:\sqrt{{y}}\:\right)}}{\:\sqrt{{x}}\:\sqrt{{y}}\:\cancel{\left(\sqrt{{x}}\:+\sqrt{{y}}\:\right)}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}}} \\ $$$$\:\frac{\left(\sqrt{{x}}\:\:−\:\sqrt{{y}}\:\right)}{\:\:\sqrt{{y}}\:}\:=\:\mathrm{1} \\ $$$$\:\:\sqrt{{x}}\:=\mathrm{2}\sqrt{{y}} \\ $$$$\frac{\sqrt{{x}}\:}{\:\sqrt{{y}}}=\mathrm{2} \\ $$$$\frac{{x}}{{y}}=\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *