Menu Close

if-x-y-z-0-and-4xyz-4xy-2yz-3zx-6-prove-that-2x-3y-4z-4-xy-yz-zx-




Question Number 156467 by MathSh last updated on 11/Oct/21
if  x;y;z≥0  and  4xyz+4xy+2yz+3zx=6  prove that:  2x+3y+4z ≥ 4(xy+yz+zx)
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{4xyz}+\mathrm{4xy}+\mathrm{2yz}+\mathrm{3zx}=\mathrm{6} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{2x}+\mathrm{3y}+\mathrm{4z}\:\geqslant\:\mathrm{4}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *