Menu Close

if-x-y-z-0-find-the-maximum-of-x-2y-3z-x-2-y-2-z-2-




Question Number 181318 by mr W last updated on 23/Nov/22
if x+y+z=0, find the maximum of  ((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 )))).
ifx+y+z=0,findthemaximumofx+2y+3zx2+y2+z2.
Commented by mr W last updated on 02/Dec/22
see Q181875 for other solutions
seeQ181875forothersolutions
Answered by Frix last updated on 24/Nov/22
((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 ))))  z=−(x+y)  (((√2)∣2x+y∣)/( 2(√(x^2 +xy+y^2 ))))  y=cx  (((√2)∣c+2∣)/(2(√(c^2 +c+1))))  ⇒ min at c=−2  ((√2)/2)×((d[((∣c+2∣)/( (√(c^2 +c+1))))])/dc)=−((3(√2)c(c+2))/( 4∣c+2∣(√((c^2 +c+1)^3 ))))=0  ⇒ max at c=0  ⇒ 0≤(((√2)∣c+2∣)/(2(√(c^2 +c+1)))) ≤(√2)  ∀r∈R\{0}:  the minimum is at (x, y, z)=(r, −2r, r)  the maximum is at (x, y, z)=(r, 0, −r)
x+2y+3zx2+y2+z2z=(x+y)22x+y2x2+xy+y2y=cx2c+22c2+c+1minatc=222×d[c+2c2+c+1]dc=32c(c+2)4c+2(c2+c+1)3=0maxatc=002c+22c2+c+12rR{0}:theminimumisat(x,y,z)=(r,2r,r)themaximumisat(x,y,z)=(r,0,r)
Answered by a.lgnaoui last updated on 24/Nov/22
x+2y+3z=2(x+y+z)+z−x=z−x  ∣x+2y+3z∣<∣x∣+∣z∣  x^2 +y^2 +z^2 =(x+y+z)^2 −2[y(x+z)+xz]  =2[(x+z)^2 −xz]  ((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 ))))<((∣x+z∣)/(∣x+z∣(√(2−((2xz)/((x+z)^2 ))))))  <((∣x+z∣)/( (√((2(x+z)^2 )/1))))<(1/( (√2)))  the maximum is  ((√2)/2)
x+2y+3z=2(x+y+z)+zx=zxx+2y+3z∣<∣x+zx2+y2+z2=(x+y+z)22[y(x+z)+xz]=2[(x+z)2xz]x+2y+3zx2+y2+z2<x+zx+z22xz(x+z)2<x+z2(x+z)21<12themaximumis22
Commented by Frix last updated on 24/Nov/22
wrong!  with x=1∧y=0∧z=−1  ((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 ))))=((∣1−3∣)/( (√(1+0+1))))=(2/( (√2)))=(√2)>((√2)/2)
wrong!withx=1y=0z=1x+2y+3zx2+y2+z2=131+0+1=22=2>22

Leave a Reply

Your email address will not be published. Required fields are marked *