Question Number 181318 by mr W last updated on 23/Nov/22

Commented by mr W last updated on 02/Dec/22

Answered by Frix last updated on 24/Nov/22
![((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 )))) z=−(x+y) (((√2)∣2x+y∣)/( 2(√(x^2 +xy+y^2 )))) y=cx (((√2)∣c+2∣)/(2(√(c^2 +c+1)))) ⇒ min at c=−2 ((√2)/2)×((d[((∣c+2∣)/( (√(c^2 +c+1))))])/dc)=−((3(√2)c(c+2))/( 4∣c+2∣(√((c^2 +c+1)^3 ))))=0 ⇒ max at c=0 ⇒ 0≤(((√2)∣c+2∣)/(2(√(c^2 +c+1)))) ≤(√2) ∀r∈R\{0}: the minimum is at (x, y, z)=(r, −2r, r) the maximum is at (x, y, z)=(r, 0, −r)](https://www.tinkutara.com/question/Q181341.png)
Answered by a.lgnaoui last updated on 24/Nov/22
![x+2y+3z=2(x+y+z)+z−x=z−x ∣x+2y+3z∣<∣x∣+∣z∣ x^2 +y^2 +z^2 =(x+y+z)^2 −2[y(x+z)+xz] =2[(x+z)^2 −xz] ((∣x+2y+3z∣)/( (√(x^2 +y^2 +z^2 ))))<((∣x+z∣)/(∣x+z∣(√(2−((2xz)/((x+z)^2 )))))) <((∣x+z∣)/( (√((2(x+z)^2 )/1))))<(1/( (√2))) the maximum is ((√2)/2)](https://www.tinkutara.com/question/Q181325.png)
Commented by Frix last updated on 24/Nov/22
