Menu Close

If-x-y-z-0-then-2-x-2-y-2-z-2-x-y-z-4-xy-4-yz-4-zx-1-




Question Number 150303 by mathdanisur last updated on 10/Aug/21
If   x;y;z∈[0;∞)  then:  2^x +2^y +2^z +2^(x+y+z)  ≥ 4^(√(xy)) +4^(√(yz)) +4^(√(zx)) +1
$$\mathrm{If}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z}\in\left[\mathrm{0};\infty\right)\:\:\mathrm{then}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} +\mathrm{2}^{\boldsymbol{\mathrm{y}}} +\mathrm{2}^{\boldsymbol{\mathrm{z}}} +\mathrm{2}^{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}} \:\geqslant\:\mathrm{4}^{\sqrt{\boldsymbol{\mathrm{xy}}}} +\mathrm{4}^{\sqrt{\boldsymbol{\mathrm{yz}}}} +\mathrm{4}^{\sqrt{\boldsymbol{\mathrm{zx}}}} +\mathrm{1} \\ $$
Answered by aleks041103 last updated on 11/Aug/21
x;y;z∈[0;∞) ⇒ 2^x ,2^y ,2^z ≥1  ⇒(2^x −1)(2^y −1)(2^z −1)≥0  Expanding the parentacies  2^x +2^y +2^z +2^(x+y+z) ≥2^(x+y) +2^(y+z) +2^(x+z) +1  But we know that:  ((x+y)/2)≥(√(xy))⇒x+y≥2(√(xy))⇒2^(x+y) ≥2^(2(√(xy))) =4^(√(xy))   Analogously  2^(y+z) ≥4^(√(yz))  and 2^(x+z) ≥4^(√(xz))   Therefore  2^x +2^y +2^z +2^(x+y+z) ≥4^(√(xy)) +4^(√(yz)) +4^(√(xz)) +1
$$\mathrm{x};\mathrm{y};\mathrm{z}\in\left[\mathrm{0};\infty\right)\:\Rightarrow\:\mathrm{2}^{{x}} ,\mathrm{2}^{{y}} ,\mathrm{2}^{{z}} \geqslant\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{2}^{{x}} −\mathrm{1}\right)\left(\mathrm{2}^{{y}} −\mathrm{1}\right)\left(\mathrm{2}^{{z}} −\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$${Expanding}\:{the}\:{parentacies} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{{y}} +\mathrm{2}^{{z}} +\mathrm{2}^{{x}+{y}+{z}} \geqslant\mathrm{2}^{{x}+{y}} +\mathrm{2}^{{y}+{z}} +\mathrm{2}^{{x}+{z}} +\mathrm{1} \\ $$$${But}\:{we}\:{know}\:{that}: \\ $$$$\frac{{x}+{y}}{\mathrm{2}}\geqslant\sqrt{{xy}}\Rightarrow{x}+{y}\geqslant\mathrm{2}\sqrt{{xy}}\Rightarrow\mathrm{2}^{{x}+{y}} \geqslant\mathrm{2}^{\mathrm{2}\sqrt{{xy}}} =\mathrm{4}^{\sqrt{{xy}}} \\ $$$${Analogously} \\ $$$$\mathrm{2}^{{y}+{z}} \geqslant\mathrm{4}^{\sqrt{{yz}}} \:{and}\:\mathrm{2}^{{x}+{z}} \geqslant\mathrm{4}^{\sqrt{{xz}}} \\ $$$${Therefore} \\ $$$$\mathrm{2}^{{x}} +\mathrm{2}^{{y}} +\mathrm{2}^{{z}} +\mathrm{2}^{{x}+{y}+{z}} \geqslant\mathrm{4}^{\sqrt{{xy}}} +\mathrm{4}^{\sqrt{{yz}}} +\mathrm{4}^{\sqrt{{xz}}} +\mathrm{1} \\ $$
Commented by mathdanisur last updated on 11/Aug/21
ThankYou Ser
$$\mathrm{ThankYou}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *