Menu Close

If-x-y-z-1-and-x-y-z-are-positive-real-numbers-then-the-least-value-of-1-x-1-1-y-1-1-z-1-is-




Question Number 112998 by Aina Samuel Temidayo last updated on 10/Sep/20
If x+y+z=1 and x,y,z are positive  real numbers, then the least value of  ((1/x)−1)((1/y)−1)((1/z)−1) is
Ifx+y+z=1andx,y,zarepositiverealnumbers,thentheleastvalueof(1x1)(1y1)(1z1)is
Answered by MJS_new last updated on 11/Sep/20
z=1−x−y  ⇒ −(((x−1)(x+y)(y−1))/(x(x+y−1)y))  (d/dy)[−(((x−1)(x+y)(y−1))/(x(x+y−1)y))]=0  −(((x−1)(x+2y−1))/((x+y−1)^2 y^2 ))=0 ⇒ y=((1−x)/2)  ⇒ −(((x+1)^2 )/(x(x−1)))  (d/dx)[−(((x+1)^2 )/(x(x−1)))]=0  (((x+1)(3x−1))/(x^2 (x−1)^2 ))=0 ⇒ x=y=z=(1/3)  ⇒ minimum value is 8
z=1xy(x1)(x+y)(y1)x(x+y1)yddy[(x1)(x+y)(y1)x(x+y1)y]=0(x1)(x+2y1)(x+y1)2y2=0y=1x2(x+1)2x(x1)ddx[(x+1)2x(x1)]=0(x+1)(3x1)x2(x1)2=0x=y=z=13minimumvalueis8

Leave a Reply

Your email address will not be published. Required fields are marked *